Robotic Solutions
For On-Orbit Servicing

John Lymer

March 2010

Space Missions
Approved for Public Release. Distribution Unlimited
Technological and Operational Foundation for On-Orbit Servicing

86 Shuttle Missions with Robotic Operations
9 years of ISS robotic assembly and support operations

Shuttle and ISS experience provides foundation for the design and execution of future Servicing Missions
Shuttle and ISS experience provides foundation for the design and execution of future Servicing Missions

- Operations planning and workarounds
- Man and machine coordination
- Robotic control from the ground
 - Command path signal delay, safety
- Robotic performance in 0g
 - Handling large structures, contact operations, vehicle capture
 - Force sensing and regulation
 - Design Verification strategies
- Supportable On-Orbit Robotic Equipment
 - Long life,
 - Maintainable and interchangeable parts
Autonomous Servicing of Prepared Clients

DARPA Orbital Express 2007

- Key Servicing Functions Demonstrated in LEO for remote servicing missions
- Autonomous vehicle capture
- Autonomous Computer and Battery exchange
- autonomous fluid transfer
- streamlined operations approach
- candidate servicing interface standard

Approved for Public Release, Distribution Unlimited
Demonstrated Strategies for Clients designed to Non-Robotic Standards

- GSFC and MDA demonstration of dexterous robotics with HST HiFi mockup in 2004-2005
- Planned robotic compatibility can be non-invasive to a client

Approved for Public Release, Distribution Unlimited
• GSFC and MDA demonstration of dexterous robotics with HST HiFi mockup in 2004-2005
 – Tools for non-traditional robotic tasks
 • Latches, J-hooks, ground straps, electrical connectors, large instruments, cables
 – supervised autonomy
 • Combination of automatic modes and tele-operational modes
 • Model based planning with real time correction
 • situational awareness, worksite registration strategies, and local force control to handle planning model errors for trajectories and contact operations
 • Up to 7 seconds of command path latency accommodated
• Demonstrated that robotic servicing can be applied to a client that is designed to any standard and therefore…
• **Planned robotic compatibility can be non-invasive to a client**
On-orbit Test bed for Advanced Servicing Missions

Dextre on ISS – perfect testbed for ground controlled, dexterous servicing demonstrations

Practicing with the 1g SPDM-GT for the upcoming RPCM changeout

Approved for Public Release, Distribution Unlimited
Next Generation Servicing Technologies

• Exploration Missions beyond GEO
• Mass, cost, operational optimization
• Exploration Missions beyond GEO
 – CSA funded development to advance Next Generation Missions, architectures and technologies:
 • Role of robotic servicing
 – Assembly
 – Risk reduction
 – Outfitting
 – Life extension, enhancement
 • Mission compatibility
 – Packaging of large robots
 • Mass optimization
 • cost effectiveness
 • Operational Optimization
 – Consolidated operators console for streamlined mission planning and support
Commercial Satellite Servicing

Robotic technologies are sufficiently mature for GEO satellite servicing

A cost effective servicing mission can validate the operating principles and value of a serviceable space infrastructure

- MDA is designing a servicer that can add 50 years of life to 9-11 existing GEO satellites through the re-supply of propellants
- Able to tow clients to graveyard orbit or adjust orbit
- Combines operational and technical lessons learned from preceding robotic missions
 - robotic arm to expose client FDVs and handle propellant re-supply tools
 - Human aided rendezvous using techniques developed for remote control of robotics
 - automated docking using client apogee engine

SIS: a Commercial On-Orbit Servicer for Multiple Clients in GEO