

Engineering & Science

Servicing and Lagrange Point Operations for Astronomy

Briefing to the International On-Orbit Satellite Servicing Workshop Dan Lester University of Texas March 24, 2010

approved for public release, distribution unlimited 3-17-2010

"Future Servicing Opportunities for Space Astronomy Facilities"

Dan Lester Research Fellow University of Texas

Jason Budinoff Aerospace Engineer NASA GSFC

David Folta Flight Dynamics Engineer NASA GSFC Rud Moe Aerospace Engineer NASA GSFC

Chuck Lillie Advanced Systems Project Manager Northrop Grumman Aerospace

Harley Thronson Associate Director for Advanced Concepts and Planning NASA GSFC

Servicing & maintenance are enabling for astronomy

Hendy's Law (focal planes)

Richard's Law (infrared)

Enabling our available telescopes to harness cutting edge detector technology give <u>orders of magnitude improvement</u> in capability. We do this routinely in ground-based telescopes, and we've seen done it for HST!

Why throw away a perfectly good telescope to do great things??

DFL 3/24/2010

HST marked technology leap showing potential of free-space

- demonstrated precise pointing and tracking (0.003")
- demonstrated wide-field diffraction-limited performance
- demonstrated precision thermal control in a difficult environment
- demonstrated high observational efficiency
- demonstrated survivability in a space environment

and, in particular

demonstrated accessibility for servicing and maintenance

Achieved space performance with ground-based reconfigurability. Multiplication of performance with new instruments.

All this with what is now 25 year old technology ...

Advantages of free-space for telescopes

- Vacuum operation, panchromatic
- Zero-g environment; mass advantage
- Contamination free
- Low torque environment
- Low latency for Earth orbits

and, in particular, for Earth-Sun L1 and L2

- Extraordinary thermal stability
- Very low temps possible w/shields
- Extraordinarily low torques
- Continuous communications link
- Continuous solar power

Not a big surprise - in the deployment roadmap for future space telescopes, Earth-Sun Lagrange points are <u>prime</u> ops sites!

Servicing venues - a range of possibilities

	LOCATION				
	LEO	EM L1	Cis-lunar	LLO	ES L2
	Considerable influence	Most benign of the	Might be used	Persistent thermal	Eventual
	from gravity and thermal	options with respect	during transit of the	and gravity effects.	operational
	shadowing by Earth	to gravity and	observatory to ES		location of
HUMAN		thermal disturbance	L2		most systems.
PLAIFORM		effects.			
	I his is the Hubble model.	Most likely location	Possible since this is	Very likely,	
	[A]	[B]	the path to be taken	depending on lunar	
			to the Moon.		
	Requires tugs, agile arms or other construction hardware. Robotic or telerobotic systems could be				
EVA	employed, under the control of humans.				
Dedicated and	A surrogate for international	Nost likely location	Unlikely since no	Proposed by many	
permanently	Space Station. A possible		permanent numan	architecture studies.	Excluded due
	aptions, but only if		this location	depet for fuel and	to Astronaut
Service center	options, but only il		this location		safety
	be addressed [A]			other consumables	concerns.
Dodicated	Like CEV, but would be	Most likely location	Possiblo but is	Considerable	
service center	larger and not equipped to	Wost likely location	energetically	energy penalty to	
with occasional			inefficient because	and to 1.2	
human	smaller than ISS for cost		substantial	ger to L2	
nresence	reasons [A]		propulsion is needed		
			to maintain position		
No gateway or	Testing resources must be embedded in the observatory or testing resources brought to the observatory by CEV or				
CEV support	autonomous precision navigation. Probably precludes human roles				
for testing		tion. I roddby problades			

EM L1 advantageous

The interplanetary superhighway & space astronomy

• Earth-Moon L1 & L2 are "on the way" to the Moon (but not optimal for astronomy ...)

But its EASY to travel between them! $\Delta V \sim 20-50$ meters/sec !!

"Ops site" versus "job site". You'd rather service at some place close by!

Earth-Moon L1 as a key element in future space exploration was developed in detail by the Decadal Planning Team (c.2000).

"ops site" versus "job site"

- You don't have to service things on-site where you use them.
- You want to service them close to the Earth minimize control latency to Earth, escape time

Lagrange points are essentially propulsion neutral!

Observe with the facility at the L point where observing is good.

Service the facility at the L point where servicing is easy.

Why do servicing at Earth-Sun L2 ???

Getting there and staying there: propulsion cost

Transfer from LEO (C3 (km²/sec²)) ~ -1.8 to -2.2, ~5 km/s Insert into EML_{1/2} orbit: ~ 600 m/s, stationkeeping ~100 m/s/yr Rendezvous & dock ~10 m/s (under study)

Transfers to/from ESL₂ Orbit: ~50 m/s ESL₂ stationkeeping & etc. ~4 m/s per year

DFL 3/24/2010

Transfer Timing:

Xfer LEO to $\text{EML}_{1/2}$: 5 to 7 days window with ~ two week interval Xfer $\text{EML}_{1/2}$ to SEL_2 : ~ 3-6 month transit with ~two week interval Launch window opportunities:

any day for single transfer to $EML_{1/2}$.

2 week intervals for rendezvous to spacecraft in EML_{1/2}

Durations:

 $EML_{1/2}$: 12 to 14 day orbital period SEL₂: 180 day orbital period EML_{1/2} to SEL₂ transfer: 90-120 days

Orbit maintenance:

Traditional range & Doppler (USN or DSN antennae) as for LRO & etc. ... sub km position accuracy ... sub cm/s velocity accuracy Constellation management and rendezvous: active cross-track distributed nav systems radar ... sub meter position accuracy imaging recognition systems laser ranging

... sub cm position accuracy

The Single Aperture Far Infrared (SAFIR) observatory is a general concept for a large aperture (~10m-class) cryogenic far infrared space telescope that would operate at ESL₂.

This telescope received endorsement by the 2000 Astronomy Decadal Survey as a long range priority for NASA.

SAFIR was examined as a "Vision Mission" study in 2003-2004, and a version of the observatory adopted at that time was inspired by the JWST architecture.

This Vision Mission study specifically considered in-space servicing opportunities for SAFIR using EML1 as a job site.

Notional EM L1 servicing mission for a SAFIR - one clear path

Servicing strategies for a SAFIR - I

J. Budinoff GSFC

Service vehicle approaches a SAFIR at Earth-Moon L1. Dock on LIDS-compatible interface.

DFL 3/24/2010

Servicing strategies for a SAFIR - II

J. Budinoff GSFC

SAFIR service enabled by teleoperated deployable crane with depressurization EVA for hands-on supervision.

DFL 3/24/2010

Servicing strategies for a SAFIR - III

Novel "boom deployed" telescope (in contrast to JWST) concept offers astronomical advantages as well as <u>servicing advantages</u>.

- Adjust CM to cancel torques
- Larger field of regard
- Better thermal isolation
- Faster slews

- Present targets to Sun-side agent
- Maintain visual contact with target from agent vehicle
- Extra dexterity using boom as crane

John Frassanito & Associates

... so picture this!

DFL 3/24/2010

DFL 3/24/2010

Steps forward (policy, management, engineering)

- Build on hard-won expertise in space servicing and construction. It's something we're really good at, at least in LEO.
- Assess relative importance of astronauts and telehumans for observatory servicing in view of rapidly changing technology.
- Develop large telescope concepts that can best accommodate remote servicing.
- Create TRL-raising opportunities for servicing future Lagrange point astronomy missions doing proof-of-concepts on ISS.
- Devise strategies for modularity, interface commonality, contamination control, accessibility, that are beneficial to large space telescopes.
- Establish Lagrange points as enabling "destinations" (e.g. DPT2000). Do DRM for EML₁ servicing of an ESL₂-based notional observatory.