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Eckart Graf and Richard H. Bentall,
European Space Agency, Noordwijk, The Netherlands.

Abstract of the Paper:

EURECA is now becoming established as a ground serviced platform for experi-
mental packages. As the facilities available for in-orbit servicing improve,
culminating in the Space Station Programme, there is a growing interest in
evolving the EURECA platform into a serviceable spacecraft, allowing the
exchange of payloads in orbit, and the achievement of longer missions.
This paper describes the expected serviceable features of an EURECA and
e A describes a demonstration mission approach which would constitute an early

and important stage of the development towards a fully space-based platform.

Table of Contents:

o Description of the baseline EURECA

o EURECA and the Space Station

o EURECA as a testbed for in-orbit technology demonstration mission
- Refuelling
- ORU Exchange

o EURECA enhancement for space-based application.
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DESCRIPTION OF THE BASELINE EURECA
PROGRAMME SUMMARY

The European Retrievable Carrier (EURECA) is a free-flying reusable
platform launched and retrieved by the STS. As an element of the Spacelab
follow-on development programme EURECA provides to the user community a
platform with capabilities beyond those of Spacelab regarding on-orbit
staytime and microgravity environment and will allow important research
and application missions prior to as well as complementary to the Space
Station for payloads which do not require man's involvement.

While the first EURECA mission will be primarily a microgravity mission,
i the cost effectiveness of “reutilisation of an available retrievable
platform is also of interest for the space science community, particularly
astronomy and solar physics, and allows flight opportunities for a variety
of earth observation payloads. In addition, EURECA constitutes an ideal
P, test bed for in-orbit demonstration of technologies like inter-orbit

communication, rendez-vous and docking, and in-orbit servicing, which
are essential for Europe to achieve its long-term objectives in space.

Consistent with the initial objectives of the Eureca programme to expand
Europe's capability and competitiveness in the development, utilisation,
and operation of low earth orbiting platforms. Eureca also provides the
essential basis for technologies and operational capabilities required
for several candidate elements within the European space station scenario.

Several important features of the baseline Eureca design are directly
applicable to its utilisation as a co-orbiting and non co-orbiting space
station platform. These are planned for demonstration and qualification
during the first mission and will include orbit change capability, rendez-
vous with a target point in orbit in support of retrieval by the orbiter,
activation/deactivation of Eureca including safety critical operations
in orbiter proximity, European mission and payload control, ground opera-
tions and logistics for retrievable, reuseable platforms. Further it is

- planned to demonstrate platform/European Data Relay Satellite/ground
communication capability, using Eureca in combination with the Olympus
satellite.

EURECA constitutes the nucleus of a resource module, the performance of
which can be adapted to cover evolving user requirements in a smooth and
low-cost programme evolution. The capability of in-orbit servicing of
subsystems and payloads can be implemented gradually in correct phasing
with realistic European mission requirements and evolving space station
architectures, interfaces and economics.

“wrinnim

EURECA is an approved programme of the European Space Agency. The phase:
C/D started in December 1984. Planned launch dates for the first mission
are March 1988 and September 1988 for deployment and retrieval, respecti-
vely.

TPK3 FO 41, ERC
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The overall EURECA concept and programme objectives are summarized as
follows:
THE OVERALL CONCEPT
Frequent Flight Opportunities at Low Cost.

Retrievable, reusable platform

Six to nine months operation

five missions or ten years total lifetime

Standardized payload interfaces, integration and check out
Low cost ground and flight operations

Short turnaround o Low transportation cost

©O O © O O o

PROGRAMME OBJECTIVES

o Offer frequent flight opportunities at low cost

! 0 Meet known platform user requirements for microgravity, space
science, earth observation, technology

o Establish a concept of retrievable, reusable platforms which can be
; adapted to meet evolving mission requirements

0 Develop European capabilities in space platform design, develop-
ment, utilization and operation

i 0 Develop an initial platform which meets essential design, operatio-
| nal and programmatic requirements of future space station elements.

The long life-time capability of the EURECA spacecraft systems contrasts
with the short duration of the experiments and instruments which are its
customers, and it is therefore a great interest to maintain the Eureca in
orbit, while exchanging only those payloads which have served their purpose.

Fig. 2 THE MISSION PROFILE
H NOMINAL MISSION CONTINGENCY —————————=
(km) MISSION
500 1 EFFECT OF RAAN + PHASE RAAN + PH/:\JSTE
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/
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400 1

NOMINAL CONTINGENCY
RETRIEVAL RETRIEVAL
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300}~ DEPLOYMENT
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— + +
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Tab. 1

THE CONFIGURATION
/’__’\
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EURECA

ORBITER ENVELOPE

\‘ - PRIMARY PAYLOAD
\ MODULES
c———ovm :\\\\\ +Y
B RESOURCE
L) + MODULE WITH
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> il | | ProPULSION
wa ol |/ 't MODULE
<)
/ :;A;? ]

SECONDARY
PAYLOADS

N \ -\ SN USSR S PR~ G
COMMERC AL TRANSPON / / DIRECT ATTACHMENT
W

EURECA SYSTEM CAPABILITIES

MASS : TOTAL : 4000 kg
AVAILABLE TO PAYLOAD : 1000 kg

VOLUME : AVAILABLE TOPAYLOAD : 85 m3

POWER : AVAILABLE TOPAYLOAD : 1000W
PEAK. : 1500 W
SOLAR ARRAY QUTPUT  : 5000W

THERMAL CONTROL : LIQUID FREON LOOP {1000 W} AND MULT! LAYER INSULATION

DATA

MANAGEMENT : HIGH SPEED : 256 kbps
LOW SPEED : 2 kbps
MEMORY CAPACITY : 128 Mbits
AVERAGE P/L : 1.5 kbps

ATTITUDE POINTING ACCURACY : 2 1°(3SIGMA)

MICROGRAVITY : 1079g< 1Hz
10~3¢> 100 Hz

ORBIT : 526 km ;28.5°

MISSION DURATION : 6 MONTHS OPERATIONAL + 3 MONTHS
DESIGN LIFE : §MISSIONS OR 10 YEARS

TURN AROUND TIME :
BASELINE : <1.5 YEARS BETWEEN RETRIEVAL AND NEXT LAUNCH. REDUCTION DOWN

TO LESS THAN ONE YEAR UNDER STUDY

oQo0o

EURECA/ORBITER INTERFACES

STANDARD 3-POINT STRUCTURAL ATTACHMENT
DEPLOYMENT/RETRIEVAL WITH REMOTE MANIPULATOR

REMOTELY 'REMATABLE UMBILICAL FOR POWER AND DATA

GRAPPLE FIXTURE/RMS ELECTRICAL INTERFACE FOR INITIAL
ACTIVATION/FINAL DEACTIVATION AND AS BACK-UP FOR UMBILICAL

POMER
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EURECA AND THE SPACE STATION

The decision in January 1985 to collaborate with NASA in the development
of a manned Space Station is probably one of the most far-reaching ever
made by ESA's member states. It is a decision which evokes strong feelings
within the space community of Europe, ranging from cautions to unbridled
enthusiasm.

In 1988, EURECA will be a proven system, designed expressly for retrieval
and refurbishment. It will also be capable of adaptation to the tasks of
carrying payloads pertaining to the major scientific and technological
disciplines.

In addition, EURECA is also a candidate for part of the eventual Space
Station infrastructure as an autonomous payload carrier. As such, it could
accommodate and operate space instruments, either in the free-flying mode,
the docked mode, or even tethered to the Space Station or to one of the
free-flying platforms. The means to access the platform and at the same
time maintain its operational capability have not yet been identified. An
advanced EURECA platform may provide the answer.

The early availability of EURECA and its present shuttle-compatible features
enable its use as an "Orbital Test-Bed" for the demonstration of technolo-
gies and techniques of potential international interest.

o optimized mission profiles to minimize propellant consumption
and/or to extend the on-orbit staytime,

o proximity operations in support of retrieval by the Orbiter,
o demonstration of Orbital Replaceable Unit exchange,
e demonstration of refuelling.

The later two demonstrations (Refuelling and ORU exchange) with EURECA
will be described in this paper. In order to allow a combined in-orbit
demonstration for Refuelling and ORU exchange, the EURECA modifications
would be implemented after the first mission in 1988, so that the in-orbit
demonstration programme can be performed in 1990, early enough to benefit
the Columbus application. The objective of this paper is also to assess
the design improvements and evolutionary steps needed, so that the Space
Station (COLUMBUS) program may make maximum and effective use of this
platform (refer also to Fig. 1, EURECA Evolution towards the Space Station).
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Fig. 4: EURECA as a TEST BED
A combined demonstration mission for refuelling and ORU exchange.
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EURECA AS A TESTBED FOR IN-ORBIT DEMONSTRATION MISSIONS

IN-ORBIT REFUELLING
EURECA Orbit Transfer Assembly (OTA)

The task of the EURECA OTA is to transfer the carrier from its STS deploy-
ment altitude (= 300 km) to a higher orbit which is designated the ope-
rational orbit. This orbit is, depending on the OTA configuration (six-tank
or eight-tank version), between 500 and 700 km. The OTA can fulfil transfer
as well as attitude control tasks.

The OTA is a pressure-regulated monopropellant system, working with hydra-
zine as propellant and helium as pressurant. The control function is part
of the Propellant and Pressurant Loading and Control Assembly (PPLCA). The
baseline OTA configuration is shown in Figure 5.

600 kg (800 kg) hydrazine are stored in 6 (8) diaphragm tanks. These tanks
are pressurized from one high pressure helium tank with a storage capacity
of 4.6 kg helium, in which the operational temperatures range from 4 to
40° C, the max. operational pressure is 280 bar. A pressure of 23 - 24 bar
within the propellant tanks is provided by two redundant pressure regulators.
The propellant is distributed via a tubing system controlled by latching
valves and pressure transducers into two redundant thruster branches
consisting each of four 20 N thrusters. A thruster consists of a flow
control valve and a thrust chamber assembly working with a catalyst that
decomposes the injected hydrazine and expels the reaction products via the
thruster nozzle.

EURECA REACTION CONTROL ASSEMBLY (RCA)

The RCA performs the attitude control of EURECA during its operational
phase (u-g mission) and during the deployment and retrieval phases in the
vicinity of the STS, where a cold gas system is mandatory due to the
safety requirements. The positioning of its twelve 20 mN thrusters provides
for high control torques with large lever arms. They are arranged in two
redundant branches, working at 1.5 bar operating pressure. Two redundant
regulators, latching valves and high and low pressure transducers serve
for control of the RCA. They are located on the Pressurant Distribution
Panel (PDP). The 3 (5) RCA gas tanks are capable of storing 85 kg (142 kg)
nitrogen. The operational temperatures range from -10 to 450 °C, the max.
operational pressure is 280 bar.
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EURECA IN-ORBIT REFUELLING MODIFICATION ASPECTS
POSSIBLE REFUELLING CONCEPTS

To achieve a cost-effective refuelling demonstration, the method chosen
should have minimum impact on the design. This rules out such methods as
tank or module replacement and favours the utilisation of direct fluid
transfer from a shuttle based (for the purposes of the experiment) servi-
cing kit. Problems associated with the refuelling are typical also for the
Space Station scenario, and include:

contamination,

safety,

redundancy,

temperature/pressure control,

measurement of transfered fuel,

purging,

ullage gas processing (e.g. purification/
decomposition, venting, re-utilisation, storage), and
various connector related requirements.

OO O0OO0OO0OO0O0

Signal and power will also need to be exchanged and monitored during the
experiment.

LIQUID PROPELLANT TRANSFER BY PRESSURANT

The EURECA Orbit Transfer Assembly (OTA) is a pressure-regulated system with
hydrazine (N,H,) as monopropellant. The transfer therefore has to be perfor-
med by regulated pressurization (Fig. 6).

Simultaneously to propellant refuelling the ullage gas has either to be
restored in a large disposal tank on the supplier side or purified/decom-
posed and vented. Since the waste gas storage necessitates a disposal
tank of total OTA diaphragm tanks volume, the gas venting modification
seems to be preferable. Replenishing of the high pressure He-tank on the
receiver side is then realized by gas transfer in the blow-down mode.

}————42] EF—————{ power Fig. 6
}_____Ea Ej______5 signal L.
Liquid Propellant Transfer by Pressurant
— A -
@ v, alternatively
vent A No as
propellant pressurant
vapor
removal

disposal
24 tank

E)Ren0
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GASEOUS PROPELLANT TRANSFER BY BLOW-DOWN-MODE

The EURECA Reaction Control Assembly (RCA) uses GN, as cold gas propellant.

Since N.-tanks and refuelling pressures are equal tg those of the He-pressuri-
zagion %ystem of OTA, the above mentioned replenishing concepts are appli-

cable.

FLUID TRANSFER VIA FLEXIBLE HOSES/UMBILICAL

The proposed hoses/umbilical concept necessitates only a small modification

or redesign of the EURECA configuration but requires EVA operations (example
given in Figure 7). .

—_— ey €~ Tanker
- CF

bl

;

. SIC 1/F—y——uro ——
Fig. 7 standardized Refuelling Coupling for NASA JSC

REFUELLING EXPERIMENT DESIGN

Yanker Half Coupling

The detailed design tasks will be concentrated on those areas where critical
refuelling configurations are identified during the conceptual phase of the
in-orbit refuelling:

0 adaptation of EURECA baseline configuration for refuelling mission
(relocation of fuel fill interfaces, etc.);

0 modification of EURECA Orbit Transfer Assembly (OTA hydrazine
propﬁllant and helium pressurant GSE connectors and interfaces,
etc.);

0 design of fuel transfer adapter between Orbiter based refuelling
system and EURECA OTA fluid/gas connectors;

0 modification of EURECA Reaction Control Assembly (RCA N, cold gas
adapters, etc.) for pressurized gas transfer;

0 definition of the detailed refuelling sequence and procedure;

0 detailed design of electrical I/F adapter between EURECA GSE
connectors and the refuelling system for power, command, and moni-
toring of pressure, temperature and valve positions;

0 incorporation of existing NASA hardware for in-orbit expendables

resupply in the Orbiter cargo bay in the detailed design of the
refuelling experiment, if advantageous.

N
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ORU EXCHANGE DEMONSTRATION
ORU CONCEPT / BASIC CONSIDERATION

A concept of an Orbital Replaceable Unit has been established with the
objective of performing an ORU demonstration mission with EURECA as a
serviceable, small platform in LEO. The proposed ORU design and its imple-
mentation to the carrier effects only minor modification to the EURECA
baseline.

The complete ORU design combines a suitable amount of existing technology
and hardware with the results of European design studies. With regard to
the ongoing COLUMBUS study, the design is also consistent with the interfa-
ces to the US Space Station facilities as today indicated by the STS
servicing capabilities.

One of the design objectives was to enable the verification of both functio-
nal and operational procedures with the demonstration model of the ORU,

e.g. the concept of the EURECA operation and checkout will be changed by

the usage of Orbit Replaceable Units (ORUs) (Fig. 8).

The capability of exchange instruments in orbit implies the transfer of
operational activities from ground to orbit. Interface verification, S/W
installation/updates and demonstrations, performance of qualification/accep-
tance tests, long-term flight verification programs have to be envisaged.

On the other hand, the ORU design concept will be driven in part by the
Operations & Checkout Requirements.

ORU Afssion part | ORU Mishon part2 ORU

l l \
EURECA EURECA @cy
R sxchange
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Flight Checkowl Confidsnce Clheck Flight Checkot
ORU MTP ORU
| EURECA
. EURECA i
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gl e T PTE ) %c//mw
PTT
1 ORU
= L™ operations &
Qockout
o checkout
ORU

Fig. 8: Operations & Checkout Concept.
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ORU DESIGN

The ORU design incorporates the following critical items:

o cover structure and groundplate (see Fig. 10 );
electrical connector H/W selection and integration;

ORU I/F to the servicing equipment (tool kit for bolt attachment
i.e. UST , grapple fixture, etc.); the latching mechanism and the
sequence of ORU attachment are shown in Fig. 10 also;

o mechanical/electrical I/F between ORU and carrier structure;

definition of a carrier structure; this will include the NASA
hitch-hiker-6 program, the typical location and mounting I/F shows
Fig.9 for an ORU location during transport at the hitckhiker mount-
ing interface;

ORU data handling I/F and performance requirements;

detailed planning and description of ORU replacement mission, using
EVA operations.
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Fig. 9 Proposed Location of ORU during Transport at STS Orbiter
Hitchhiker Mouting I/F
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EURECA ENHANCEMENT FOR A SPACE-BASED APPLICATION

While the immediate objective of the programme is to utilise the Eureca as
a test-bed for the flight proving of serviceable features, the ultimate
goal is to evolve towards an "enhanced Eureca" whose payloads can be ex-
changed in orbit. Depending on mission and operational analyses for short
turnaround missions, several or all instruments located on the upper plat-
form can in principle be exchanged in orbit with EURECA berthed in the STS
Orbiter cargo bay. The operational and detailed design concept of ORUs and
the I/F to the shuttle servicing equipment is currently under investigation.

Based on MBB/ERNO's ORU design, an investigation has been performed to
implement the payload ORU replacement as a fully integrated servicing
function of EURECA, e.g. modification of the carrier and improvement of
ORU concept. A possible concept of P/L ORUs attached to EURECA is shown in
Figure 11.

STANDARD
ORU CONCEPTUAL
CONF IGURAT ION

SPECIAL
ORU CONCEPTUAL
CONF IGURAT ION

—+——— ORBITER ENVELOPE

+Y

-Y // x X
REFUELLING B!

1/F PANEL —
LOCATION

COMMERCIAL TRANSPOIN ‘ , ,» DIRECT ATTACHMENT
ENVELOPE \\\W

Fig. 11 Payload Orbital Replaceable Unit Concept.
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EURECA

For more complex applications, where technical improvements of the baseline
EURECA are not feasible and cost effective, a new spacecraft concept is
required. This can be most effectively achieved by a complete redesign,
but using as much as possible existing EURECA and other European S/C elements

and technology.

’Mﬂﬂ

A two-module spacecraft will be studied (separate Resource Module (RM) and
Payload Module (PM) with the objective to utilize especially for the RM the
available EURECA or other European hardware. The application of conventional
spacecraft design and technology with built-in redundancy will be applied in
order to avoid highly sophisticated and over-emphasized modular design

solutions. See Figure 12 "EURECA-Derived RM Concept".
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SIZE 1

PASSIVE DOCKING
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Figure 12 EURECA-Derived RM Concept

SUMMARY / CONCLUSION

This paper has described the design areas where current studies, intended
to derive a serviceable Eureca, are concentrating their effort. The pro-
posed demonstration encompasses aspects of servicing of interest not only
to Europe, but also to the STS servicing capabilities and provides an
early opportunity to achieve confidence in these important operational

features.
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SPACE STATION TECHNOLOGY EXPERIMENTS

Dr. Roger A. Breckenridge and Richard A. Russell
Space Station Office
Langley Research Center
Hampton, Virginia

I. Abstract

With the advent of the Space Station will come significant opportunities
to perform experiments in the near-Earth space environment. It is anticipated
that the Space Station will be an in-space facility where long duration
missions can be conducted. A large number of experiments are expected to be
performed in science and applications, technology, and commercial ventures.
NASA is working very actively to establish the experimental requirements from
each experiment category. This paper addresses the in-space technology
experiments and uses of the Space Station as presently envisioned for this
next step in space.

IT. Introduction

With the advent of the Space Station in the early 1990's will come
opportunities to perform experiments in the near Earth space environment on a
scale which far exceeds the current capability of the Space Shuttle or free
fliers. The duration of the experiments will be on the order of weeks and
months instead of several days as with the Shuttle. Also, it will be possible
to conduct active experiments with man-in-the-loop to a far greater extent
than presently possible. Since the Space Station will have associated
platforms,l it will be possible to also perform in-space experiments which are
isolated from the Station itself. This possibility permits experiments to be
conducted at lower g levels than possible on the Space Station and at a
different orbital inclination (90°) from the Station.

A large number of experiments are expected to be performed in science and
applications, technology, and commercial ventures. Currently, the
requirements for these classes of experiments are under assessment by NASA.
This assessment is an extremely ambitious undertaking which involves more than
the Space Station organizations at NASA Headquarters and the various NASA
Centers. It also includes other NASA Headquarters program offices and
significant resources from the NASA Centers. Technology experiments, the
topic of interest in this paper, have been addressed by the Office of Space
Station at NASA Headquarters. However, this activity has been primarily
restricted to NASA conceptual experiments. Currently, the Office of
Aeronautics and Space Technology, NASA Headquarters is undertaking an in-space
research, technology, and engineering program to establish candidate
activities for 1990 and beyond and to validate the associated experiment
themes which best describe these activities.
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III. Characteristics and Uses of the Space Station

Figure 1 shows the reference configuration of the Space Station, i.e.,
that configuration upon which the definition and design phase of the Space
Station Program is based. The reference configuration is called the “"Power
Tower" configuration.1 Its primary advantages are inherent stability (i.e.,
it will remain essentially Earth pointing without a concerted effort made to
control its attitude); relatively unobstructed viewing angles for instruments
and antennas; service accessibility for the Space Shuttle, the Orbital
Maneuvering Vehicle (OMV), and satellites; and the facilitation of evolution
or growth. The figure shows five modules for habitation, logistics, and
laboratories arranged in a "race track" configuration. This module number and
arrangement are under intense investigation, and both are subject to change by
the time the design has been finalized. The figure shows a hoop-column
structure .attached to the Station which indicates the manner in which large
space structures experiments can be acconmodated as attached payloads on the
Space Station. The large white boxes attached to the keel are for storage.
There are also shown attached payloads at the top of the Station. The initial
Station will be equipped with four sets of solar arrays and a pair of thermal
radiators. An unmanned coorbiting platform is shown in the figure. This
platform will be in the same orbital inclination as the Station but will be
accessible from the Station by the Orbital Maneuvering Vehicle.

Figure 2 shows the purposes of the Space Station. It is intended to be a
national laboratory in space where science and applications, technology, and
commercial experiments can be performed. It will be a permanent observatory
in low Earth orbit where the Earth and its environment and deep space can be
remotely investigated. The Space Station will serve as a servicing facility
for satellites, platforms and the OMV. It will serve as a node for the Space
Transportation System. It will serve as an assembly facility and a
manufacturing facility. The Space Station will serve as a storage depot to
store expendables and experiments to be activated at a later date. It will
also be a staging base for future programs in space. In every sense of the
word a space station is a multi-purpose facility.

The uses of the initial Space Station are graphically depicted in
figure 3. The three classes of experiments are shown with accompanying
examples. Under science and applications, atmospheric and 1ife sciences
experiments will be conducted. The Earth Observing System? (EOS) is shown in
the figure. This system will include an array of sensing instruments for
investigating the Earth and its environment. Although the EOS is shown as a
part of the main Space Station itself, in reality it may actually be
accommodated on the polar (90° inclination) platform. Commercial experiments
will include those which make use of a microgravity research facility. In the
microgravity environment of such a facility it will be possible to produce
pharmaceuticals and alloys that cannot be produced in the 1 g environment on
the Earth. Under technology experiments the assembly of large space
structures will be possible. In addition, the transfer of fluids (cryogens,
propellants, etc.) will be investigated since this becomes a nontrivial
operation in orbit. While satellite retrieval and minimal servicing is
possible with the Shuttle, space operations such as satellite servicing and
platform servicing will become commonplace.
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IV. Experimental Utilization

The next figure (figure 4) addresses the utilization aspects of the Space
Station. The Space Station is to be user friendly, i.e., the complications of
flying an experiment will be reduced significantly compared to the current
situation. From the beginning, the Space Station Program has been focused
upon the user, and utilization continues to be an important element of the
program. As has been discussed previously, the users span science, commerce,
and technology. User requirements are helping to shape the system
requirements of the Space Station although they are not driving the system
requirements due to constraints such as cost. It is expected that the Space
Station design will accommodate a performance envelope (power, weight, volume,
etc.) which will be derived from time-phased mission models from each user
category.

Obviously, the environment to which an exgeriment would be subjected is
very significant. Some of the characteristics® of this environment are
indicated in figure 5. The planned altitude of the Space Station orbit is 500
kilometers (=270 nautical miles); the planned inclination of the orbit is
28.5°. The pressure at this altitude is shown for both sunspot minimum and
maximum. These pressures would be important for externally-attached

payloads. The internal pressure in the laboratory modules is under
investigation and will be decided at a later time. The planned protection
probability from meteroids or debris is 95% within the Space Station modules.
External to the Space Station ultraviolet and particle radiation will be
encountered as shown in the figure. In the central portion of the figure are
shown the desired gravitation Tevels. At present a level of 10-0g is the
desired level in the vicinity of the center of gravity.

Up to the present time the Space Station Program has supported the
conceptual definition of technology experiments. The description and details
of each experiment resides in the Space Station Mission Requirements Data
Base.* Technology development mission (TDM) is the term used for the
conceptual technology experiments. There are approximately 70 TDM's in the
Mission Requirements Data Base. These TDM's for the most part consist of NASA
experiments. The TDM's have been categorized into six areas® as shown in
figure 6. These categories are materials and structures, energy conversion,
communications and electronics, propulsion, controls and human factors, and
systems operations. The materials and structures category contains materials
performance and processing, deployment/assembly, construction, and structural
dynamics. The energy conversion category encompasses solar concentrators,
Taser power transmission/reception, waste heat rejection, and power
subsystems. The TDM's under the communications and electronics category
include space antennas, telecommunication systems, space interferometer
systems, and Earth observations. The propulsion category covers fluid
management and low thrust propulsion. Under the controls and human factors
category are figure controls and devices, information systems, teleoperation,
and interactive human factors. The systems operations category contains

environmental effects, habitation, medical, tether systems, satellite and OTV
servicing, and systems operations.




V. Technology Development Mission Examples

The following examples are technology development missions which are
representative of each category in the technology portion of the Mission Data
Base.

TDM's numbering 2000-2099 fall into the materials and structures
category. Representative of this category is TDM 2071 entitled Flight
Dynamics Identification.b Figure 7 shows a conceptual drawing of the
experiment. The following is a brief statement of the objective and
description of this experiment:

TDM 2071 - Flight Dynamics Identification
OBJECTIVE:

The purpose of this flight dynamics experiment is to develop
the technology necessary to perform autonomous, in-space system
identification, including the capability to estimate the shape,
orientation, surface quality, flight dynamics parameters, and mass
properties of various components of the Space Station (e.g., beam
structures, deployable antenna assemblies and solar panels).

DESCRIPTION:

The conceptual definition of the Flight Dynamics
Identification Experiment has been developed for implementation on
the Space Station. Mission experiment will center upon an antenna
reflector attached to a boom structure deployed on the Space
Station. Retroreflector targets, typically mirrors, will be placed
on the antenna surface. A laser beam will illuminate the antenna
surface, and the retroreflectors, and a sensor will detect
deformations in the antenna surface from reflected 1ight.

The energy conversion category contains TDM's numbering 2100-2199,
Representative of this category is TDM 2153 entitled Solar Dynamic Power Test
Facility,’ a conceptual rendering of which is shown in figure 8. This
technology development mission has the following objective and description.

TDM 2153 - Solar Dynamic Power Test Facility
OBJECTIVE:

To provide a dedicated area on Space Station for flight
evaluations and test operation of candidate solar dynamic power
systems, subsystems and components. The flight evaluation work
would be separate and apart from the operational power systems
providing power to the station.

DESCRIPTION:

.Solar dynamjc power systems consist of solar collectors, heat
receivers, dynamic power conversion systems, and radiators.
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Several candidates for each component could be tested either
individually or as part of a complete system. Solar collectors
could be tested with different reflective surfaces (aluminum,
silver) with different optical configurations (simple, parabola,
cassegrainian). Solar receivers could have different heat storage
materials, different operating temperatures and could be tested
including Rankine, Brayton, and Stirling thermodynamic cycles.
Space radiators tested could include tube and fin radiators, heat
pipe radiators, and advanced radiator concepts. A major objective
of the facility would be to perform configuration tests of a
variety of advanced components and configurations that have shown
promise in ground testing of improved Station power.

Technology development missions in the communications and electronics
category are numbered 2200-2299 in the Mission Data Base. TDM 2441 entitled
Microelectronics Data System8 is representative of this category regardless of
its current number in the Mission Data Base. A sketch of this experiment is
illustrated in figure 9. This TDM has the following objective and
description.

TDM 2441 - Microelectronics Data System
OBJECTIVE:

To operate in a realistic space environment the
microelectronic, optical and opto-electronic components of
advanced, high-data-rate data systems in order to establish the
space worthiness of the technology; including data bus technology
and data transmission in the microwave bandwidth region.

DESCRIPTION:

The experiment will develop a long-term data base on the
performance of advanced microelectronic and opto-electronic data
system technology for the Space Station and other space systems.
It will have the flexibility to incorporate new and developing
technologies, including gallium arsenide switching, integrated
optic memory, and data processing. The experiment will test
concurrently three independent data system/component modules. The
experiment will operate semi-autonomously and be externally
deployed. The mission will consist of a 5- to 10-year program of
experiments, with annual recovery of exposed/tested modules and
installation of new modules. The Space Station will provide the

means for necessary long-term exposure to the space environment
(including low-dose-rate effects).

The propulsion category contains TDM's numbering 2300-2399 in the Mission
Data Base. TDM 2311 entitled Long-Term Cryogenic Fluid Storaged is
Characteristic of the experiments in this category. A diagram of this TDM is

shown in figure 10. The following objective and description are given to
convey some understanding of this experiment.
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TDM 2311 - Long-Term Cryogenic Fluid Storage
OBJECTIVE:

To develop insulation and refrigeration system technology to
provide long term orbital storage of cryogenic liquids.

DESCRIPTION:

Subscale cryogenic fluid storage tanks and refrigeration
systems would be tested to establish thermal performance and useful
life during the early phases of the Space Station evolutionary
process. Selected concepts will then provide design criteria for
cryogenic fluid storage and supply systems to provide Space Station
consumables and orbit transfer vehicle propellants.

TDM's in the controls and human factors category are numbered 2400-2499
in the Mission Data Base. TDM 2411 entitled Advanced Adaptive Controll0 is
representative of the experiments in this particular category. A conceptual

* rendering of this experiment is shown in figure 11. This TDM has the
following objective and description.

TDM 2411 - Advanced Adaptive Control
OBJECTIVE:

The underlying objectives are to develop, demonstrate, and
evaluate flight system performance and stability improvement;
sensing strategies and mechanization; control gain update
subroutines and reconfiguration schemes; and adaptive control
algorithms. 1Included in this mission are the development of
applied adaptive control concepts that will be implemented and
mechanized as algorithms for compensation of gross system model
uncertainties and changes and the demonstration of autonomous error
estimation and adaptive control techniques that are needed for
compensation of inevitable system and model uncertainties during
space payload deployment.

The specific objectives include assessment and verification of
p—_ design and performance effectiveness using the adaptive control
algorithms for systems control in the presence of parameter
uncertainties and variations onboard the Space Station. This
document addresses the design of the mission experiments from both
the equipment/instrumentation and functional aspects.

DESCRIPTION:

A mission of 90 operational days is planned. The mission
equipment includes computers/data processors and sensor monitors
that are common to other TDMX's. A1l experiments for this mission
will involve the use of an antenna structure that is comprised of a
reflector supported by a boom geometry consisting of a long and
short boom. A six-degree-of-freedom (DOF) gimballed torquing
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device, on which the long boom will be mounted and firmly attachéd,
will provide rotations and mechanical excitations for the antenna
structure. A set of forcing devices may be attached to different
parts of the two booms to enhance and increase vibrations through
excitations; sensors and actuators will be placed on the reflector
and the booms. The sensors will detect forcing disturbances and
figure or shape distortions. The actuators will, upon control
action through the adaptive control process, suppress those
vibrations through damping which will restore structural figure and
shape. The adaptive control algorithms will be present in control
software packages in the mission computers employed for this
experiment. Because algorithm size and complexity may be
considerable, usage of the Station computer may, for certain
experiments, be necessary. A mission specialist will be
responsible for monitoring and conducting the experiments.
Experimental data generated from this experiment is then
transmitted to ground stations for analysis. The data base
acquired, and subsequent analyses, will be used to assess and
evaluate the effectiveness and responsiveness of adaptive control
techniques used for antenna figure and pointing control, and to
analyze sensor and actuator performance in terms of generic
controllability.

Finally, in the systems operations category, the TDM's are numbered
2500-2599 in the Space Station Mission Data Base. TDM 2572 entitled Cryogenic
Propellant Transfer, Storage, and Reliquefaction Technology11 is
representative of the set of experiments in this category. A diagram of this
experiment is shown in figure 12. This technology development mission has the
following objective and description.

TDM 2572 - Cryogenic Propellant Transfer, Storage and Reliquefaction
Technology

OBJECTIVE:

To test and verify the hardware and techniques developed to
reliquify cryogenic propellant boil-off and to establish an
accurate data base for accomplishing propellant transfer, storage,
and reliquefaction for long periods of time in space.

DESCRIPTION:

The system consists of supply, receiver, and refrigeration
components. Propellant transfer is done by using a pump with a
full screen propellant acquisition device. The supply tank
contains subcritical fluid and requires an acquisition device for
providing liquid to the transfer line. During reliquefaction the
following will be accomplished: (1) perform parametric thermal
testing to determine performance of passive storage and active
refrigeration equipment; (2) determine refrigeration or
reliquefaction capacity, power requirements, heat rejection,
efficiency, boil-off, stability, automatic control; (3) perform
tests on compressors, expansion process, heat exchangers, etc.; and
(4) determine fluid leakage, particle freezeout, contamination.

7
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VI. In-Space Research, Technology, and Engineering

Currently, the Office of Aeronautics and Space Technology (OAST) at NASA
Headquarters is undertaking an in-space research, technology, and engineering
(RT&E) program to establish candidate activities for 1990 and beyond. This
program encompasses the technology experiments which are precursors to Space
Station experiments and technology experiments to be performed on the Space
Station itself. The initial phase of this in-space RT&E program will drive
out the actual user requirements since it addresses industry, university, and
other Government users in addition to the technology users identified within
NASA itself. OAST is approaching the technology users of the Space Station by
means of a technology experiment theme approach.

- Initiglly, five themes have been identified for technology experiments.
They are listed in figure I3, 'THEé themes include space structure (dynamics
and control), energy systems and thermal management, space environmental
effects, fluid management, and in-space operations. The OAST is conducting
the In-Space Research, Technology, and Engineering Workshop at the National
Conference Center at Williamsburg, Virginia, on October 8-10, 1985, where the
themes will be validated, changed, or expanded as a result of recommedations
from the technology user community. Presently, the space structure (dynamics
and control) theme includes advanced structural concepts, structural dynamics,
advanced control concepts, structure/control interaction, and structure/
control sensors. The energy systems and thermal management theme covers
advanced photovoltaics, solar dynamics, nuclear, advanced thermal concepts,
and laser power. Under the space environmental effects theme fall material
durability, plasma, and contamination. The fluid management theme includes
fuel storage and transfer, fluid behavior, and sensor concepts. The in-space
operations theme contains automation and robotics, sensor techniques,
information systems, advanced 1ife support systems, tethers, orbital transfer
vehicle, system testing, and propulsion.

VII. Concluding Remarks

The activities centered around the technology users of the Space Station
are extremely important and timely since the accommodations required for
technology experiments need to be identified early in the definition and
design phase of the Space Station Program. Also, the driver missions need to
be identified, i.e., those technology experiments which require significant
power, volume, data rates, etc. From the identification of credible
technology experiments, it will be possible to generate an envelope of
technology experimental requirements as a function of time. This effort will
support not only the planning for the initial Space Station but also the
growth version of the Space Station.
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Figure 1. Reference Configuration of Space Station
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Figure 4. Utilization Aspects of Space Station
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SPACECRAFT DESIGN FOR SERVICING*

W. L. DeRocher, Jr.

Martin Marietta Aerospace
Denver, CO 80201

Abstract

A large number of institutions addressed the design of spacecraft for on-orbit
servicing when the Space Shuttle Program was being started. The resulting
extensive literature resource was used to arrive at a preliminary design of an
on-orbit servicer and compatible design concepts of representative serviceable
spacecraft. This discussion describes the design concepts and presents some
general conclusions and recommended approaches. It is not difficult to design
spacecraft for serviceability once the spacecraft project and the designers
decide to do so. The associated weight and cost penalties were estimated to
be small (cost increments of 4% for design and development and 8% for unit

cost). Two additional areas for technology application are also discussed.

Introduction

One of the justifications for the Space Transportation System was its
potential for supporting the repair or recovery of failed spacecraft. This
approach was extended to the concept of making less expensive spacecraft,
accepting the higher predicted failure rates, and using the Shuttle to permit
repair of those spacecraft that did fail. This spawned a large number of
government, academic, and industry studies on how spacecraft might be
configured for on-orbit servicing. Figure 1 illustrates the variety of
concepts that were documented. The whole gamut from recovery and ground
refurbishment, through repair at the Orbiter, through remote operations in low
earth orbit, to repair in geosynchronous orbit were addressed. All of the
concepts we discuss these days were addressed then except for Space Station
related operations. The long cylindrical spacecraft represents the Space Tug
whose missions are now to be handled by the Orbital Maneuvering Vehicle and

the Orbital Transfer Vehicle.

* TFor presentation at Satellite Services Workshop II
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Figure 1 Serviceable Spacecraft Designs From the 70's

The extensive resource base was used in a 1974 through 1978 study conducted by
Martin Marietta for Marshall Space Flight Center. Some of the results of that
work were included in the presentations at this workshop by Don Scott and Jim
Turner of MSFC. A good summary of the early work is given in Proceedings of
the Second Conference on Payload Interfaces, MDC G4818, McDonnell Douglas

Astronautics Company, Huntington Beach, California, September 6-7, 1973.

Table 1 lists those factors that were used to form the basis for design of a
spacecraft servicing system. These factors were not selected a priori but
evolved as the study progressed or were a consensus from the literature.
Module (or On-orbit Replaceable Unit) exchange was selected as the major
servicing activity. A module is thought of in a more general sense than just
an electronics package. It can be a piece of experiment equipment, a set of
thrusters, a tank of propellant, a communications antenna, or even a fluid
umbilical comnection. This broad interpretation of "module exchange"
increases the percentage of spacecraft faults that can be repaired by this

technique.
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Table 1 Spacecraft Servicing Design Basis
o MODULE EXCHANGE IS A MAJOR SERVICING ACTIVITY

- FAILED ORU REPLACEMENT - FLUID RESUPPLY
- COUIPMENT UPGRADE - PRODUCT RETURN

o ALLOCATE REQUIREMENTS BETWEEN SERVICER AND SPACECRAFT

o  SPACECRAFT PROGRAM REQUIREMENTS

OM-ORBIT REPLACEABLE UNITS (ORU)
CLECTRICAL UMBILICAL FOR STATUS AND CONTR0L
FAILURE ISOLATION TO AN ORU (WITH GROUND SUPPORT)

¢  SERVICER SYSTEM

- TRANSPORTS ORUs - RESUPPLIES FLUIDS
- EXCHANGES ORUs - HANDLES ADAPTERS AND TOOLS

®  TRANSPORT TO ORBIT BY SHUTTLE
® LAUNCH COST MAGNITUDE IMPLIES MISSION PREPLANNING

The second item in Table 1 implies the willingness to allocate functional
requirements to the spacecraft as well as to the servicer system. The few
functions assigned to the spacecraft are very important because of how they
can simplify the design of the servicer system. This type of spacecraft could
be called servicing compatible. The last line of the table is also
significant in that it implies the mission planner should have high confidence
that his planned servicing mission will succeed or else he may be wasting tens
of millions of dollars. Preplanning means having faults isolated to an ORU
and taking a good replacement ORU along on the servicing mission. It also
implies that the entire geometry of the ORU replacement can be preprogrammed.
Only uncertainties in geometry due to the docking system, the servicer
system, and thermal effects need to be accommodated. Also any required

special tools or adapters can be taken along.

The spacecraft servicing design approach items listed in Table 2 evolved
during the course of the study. The selected servicer system can be applied
to most spacecraft that will be launched in the Shuttle because its size,
degrees of freedom, and joint ordering were carefully selected to match this
class of spacecraft. In some cases more than one docking may be necessary and

good judgement should be used in locating the modules and their attachment

interfaces.

36



Table 2 Spacecraft Servicing Design Approach

o APPLICABLE TO MANY SPACECRAFT ¢  ORU INTERFACES OPERABLE BY
¢  INCORPORATE EXISTING TECHNOLOGY - SERVICER SYSTEM
- ASTRONAUTS ON EVA
¢ PLACE FEW REQUIREMEMTS OH SPACECRAFT - GROUND HAMDLING EQUIPMENT
® REMOTELY OPERASLE ® SUPPORTED 8Y CARRIER VEHICLE
- AUTONOMOUS FOR MOST ACTIVITIES - RENDEZVOUS AND DOCKIMG
- TELEQPERATION AS ALTERNATIVE - ATTITUDE CONTROL

- ELECTRICAL POMER
- THO-VAY COMMUNICATIONS

T s ey g o

The decision to go with existing technology was easy to make because advanced
technology is not required. Some forms of Artificial Intelligence could be
useful for the planning operations. In particular, an expert system could be
used to help isolate faults to specifics ORUs and a planning system could be
used to interface with CAD/CAM representations of the failed spacecraft and
the servicer system to develop the data required for automatic module exchange
trajectory generation. As the servicer system must be transported to the
failed spacecfaft by a carrier vehicle - Orbiter, Orbital Maneuvering Vehicle,
or Orbital Transfer Vehicle - and each of these carrier vehicles can supply
certain support functions, it was decided to rely on the carrier vehicle to
provide the support functions listed at the bottom of the table. The Space
Station can provide the last three support functions, so it could be used as a
carrier vehicle for on-orbit servicing if the failed spacecraft, or equipment,

could be brought to the servicer.

Servicer System

It is useful to discuss the servicer system before the serviceable spacecraft,
as its form evolved first. A wide variety of servicer mechanism
configurations were identified in the literature. They ranged from simple one
degree—of-freedom (DOF) devices, through a three DOF rectangular travel
system, to two—arm concepts, each with 7 DOF. The selected approach started
with the Shuttle launch cost rules that favored flat disk-shaped spacecraft
such as the Orbital Maneuvering Vehicle (OMV). From this, the servicer

working volume and observations shown in Figure 2 were developed.
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Module Attachmeﬂt

Location ‘

Module

Spacecraft

Stowage Rack

\/S\eparation Distance

e The module attachment locations form a surface of revolution about the
spacecraft centerline.

o The first servicer degree of freedom should be roll about the base of the
docking probe.

¢ The need for minimum arm length and separation distance implies the
servicer mechanism must ‘‘reach around’’ the spacecraft and module
surfaces.

Observations:

Figure 2 - Servicer Mechanism Working Volume

The shaded area on Figure 2 represents the regions where the servicer
mechanism end effector must reach. The direction of module removal is
generally perpendicular to the shaded surface. The applicability of a roll
rotation for the first degree of freedom is quite apparent. As the separation
distance between the spacecraft and stowage rack is reduced, the space
available for servicer mechanism elements near the base is reduced and the
"reach-around" problem becomes more difficult. The minimum separation
distance was taken as 60 in. which allows for a 40-in. module, a ten-in. end
effector, and a five-in. clearance on each end. The "reach-around" problem

leads to use of a redundant degree of freedom.

Figure 2 implies that two layers, or tiers, of modules could be incorporated

at a single docking location. It was later decided to simplify the servicer

design to permit module exchange only from the first tier and to wait until a
specific need is identified before the servicer configuration is grown to

handle the second tier.
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An extensive review and analysis of servicer mechanism configurations and 28
serviceable spacecraft configurations was performed to arrive at the selected
servicer configuration shown in Figure 3. From the review and analysis,
extensive sets of requirements were prepared and refined. All servicer

configurations involving one or two arm segments and many three arm segment

configurations were considered.

ORU INTERFACE
MECHANISM

END EFFECTOR

SERVICER

MECHANISM SHOULDER

OMV, ORBITER, DRIVES

OR SPACE STATION
INTERFACE

SPACECRAFT
INTERFACE

STOWAGE RACK

TEMPORARY ORU
STOWAGE LOCATION

Figure 3 Integrated Orbital Servicing System (IOSS)

This design has only two major components: (1) a servicer mechanism, and (2)
a stowage rack for module transport. A docking mechanism is also shown for
reference. The servicer mechanism and the stowage rack were designed
separately with interfaces for individual removal and replacement. Stowage
racks can be configured and loaded for particular flights prior to attachment
to the carrier vehicle. It may be desirable to have available several stowage
racks for this purpose. The stowage rack shown mounts directly to an upper
stage such as the Orbital Maneuvering Vehicle. A flight support structure has

been designed to adapt the stowage rack shown to the Orbiter.



The entire design of the servicer system has been predicated on the simple
nature of the module exchange task as compared to the broader variety of tasks
that a general purpose manipulator is called upon to perform. The simple
activities of remove, flip, relocate, and insert modules, when combined with
the facts that all aspects of the module trajectories are known far in advance
of use and that the work volume is a simple solid of revolution, have been
used in many ways to result in a basically simple design in terms of mechanism
configuration, control system design and operations approach. This simplicity
was accentuated by performing the mechanism and control system designs
concurrently in an integrated manner so that each of the needed functions was

allocated to the system that could most effectively accomplish it.

Three modes of control were included. The Supervisory mode of control was
proposed as the normal mode of operation. All servicer arm motions and
trajectories are determined before flight and stored on board. A
Manual-Direct mode is provided as a totally unsophisticated means of backup
control. It sends commands directly to the joints themselves. The
Manual-Augmented mode has man doing most of the arm control as in the

Manual-Direct mode only using hand controllers instead of panel switches.

The physical attachment between an ORU and the spacecraft or stowage rack is
called an interface mechanism. A representative side interface mechanism is
shown in Figure 4 with and without a module representation. The mechanism
uses a three point, nonredundant, attachment system so spacecraft thermal and
structural loads do not pass through the module. The bell crank linkage is
driven via a worm and gear from a motor on the end effector. A spring-loaded
self-aligning tongue in a slot accomplishes the mechanical interface. The
linkage starts engagement with a low force that gradually increases to 200 1b

as the links approach an over—center position. Total travel is 1-3/4 inches.

The study suggested the development of an interface mechanism as a two-part
kit in perhaps three sizes. These standard interface mechanisms could be made
available to spacecraft designers. Each designer could then make his choice
within his own set of design and economic constraints. The graph on the

facing page is a histogram from data on 683 modules from 30 different
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Figure 4 Side Mounting Interface Mechanism

serviceable spacecraft. The recommended interface mechanism standard sizes
thus became-— 17 in., 26 in., and 40 in. These correspond to modules no
larger than a cube of the indicated dimension. The recommended corresponding

module weight limits are shown on the graph.

Serviceable Spacecraft Designs

The serviceable communications satellite shown in Figure 5 is one of three
serviceable spacecraft designs prepared by TRW, Inc. It is an excellent
representative of the form all geosynchronous communications satellites might
take. It is a single tier and is box shaped. All modules are removed
axially. In this configuration, a single solar array mounted opposite the
docking port 1is used. An advantage of the configuration shown is that tue
exposed faces of the modules, or on-orbit replaceable units (ORUs), see very

little of the sun and thus can be used to radiate heat out of the modules.
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GEOSYNCHRONOUS ORBIT

BOX SHAPE

99 IN. X 128 IN. X HO IN.
WEB STRUCTURE

SINGLE CENTRAL DOCKING
SINGLE TIER

NC Antenna (2)
with Biax Drive

Earth EC Transmit
2 H
Sensor (2) o AXTAL MODULE REMOVAL
EC R i
hoen Ve 15 MODULES
LARGEST -- 40 IN. X 40 IN. X 32 IN.
Sun Sensor HEAVIEST -- 444 L8S
pocking I?ru?E:{) MINIMUM REACH -- 23 IN.
Cone yP
MAXIMUM REACH -- 72 IN.
SRU Attach
Fitting (15)
for Servicer
Mechanism

Figure 5 Serviceable Communications Satellite

A breakdown of the spacecraft mass properties shows that 1,920 1lb, or 81% of
the total spacecraft weight, is space-replaceable. The major items that are
not serviced are the basic structure, the solar array (the solar array drive
is replaceable), the narrow-coverage antennas and their biax drives, the horn
antennas, the omni antenna, and the shunt element assembly. The spacecraft
structure is designed to maximize the volume available for components to be
carried in the ORUs, to maximize radiator area for thermal control, and to
interface with the servicer. This type of structure is less efficient than
those designed for expendable spacecraft, but not by a great amount. The
docking cone for servicing is located in the center bay of the egg-crate-like
structure. The walls of this bay form a fully-closed box, as do all the
internal ORU mounting structures. The walls are one-inch thick honeycomb core
sandwich panels. Tubular support struts are located on each side to help

support the wide upper structure.

The second of the TRW serviceable spacecraft designs was the Synchronous Earth
Observatory Satellite (SEOS). The SEOS configuration (Figure 6) was defined
by the large telescope involved and the location of the mission equipment.

The result was also a single tier of axially removed modules. However, the
docking axis was perpendicular to the telescope line of sight. The largest

SEOS module involved a 60-in. dimension to provide enough area for cooling.
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While greater than the usual module sizes, these modules can be carried in the

spare module stowage rack.
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Figure 6 Serviceable Synchronous Earth Observatory Satellite (SEOS)

There had been several preliminary spacecraft design studies for the
expendable and serviceable SEOS. The Large Earth Survey Telescope (LEST)
system shown here was described as being capable of satisfying the earth
resource and meteorological requirements. Other studies of serviceable SEOS
had less complex mission equipment but they did not meet all of the
performance requirements. Meteorological events to be monitored by SEOS
included severe storms, hurricane and tropical storms, flash floods, frost and
freeze, clear air turbulence, fog, lake and sea breezes, air pollution, and

weather modification and experiment assessment.

The earth resource (ER) and meteorological (MET) instrument packages must be
located on the side of the telescope for this optical system. Therefore, the
docking face for all ORUs was designed to be on the same side. All of the 19
ORUs are accessible by the servicer. Side mounting interface mechanisms are

used for all ORUs. The "box and shelf" type of spacecraft structure
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supporting the ORUs is envisioned to be of honeycomb panel construgtion. The
solar array mast and pivot bearings are fixed to the spacecraft structure, but
the drive motor and electronics are replaceable. Engagement/disengagement is

provided by axial positioning of the driver/driven gear interface.

The Characteristic Large Observatory (CLO) (Figure 7) was the third
serviceable spacecraft design prepared by TRW. It represents three classes of
large low—earth orbit observatories -- X-ray, stellar, and solar. The stellar
and solar versions were addressed in terms of their unique mission equipment.
The CLO incorporates two docking ports, one aft and one forward and to the
side, with the modules at each docking port arranged in a single tier. The
second docking is required because the aspect sensors must be mounted at the
mirror assembly and because there were too many modules to be mounted in a
single tier. There are several outsize mission equipment modules, but these
can be mounted in the nominal stowage rack. Roll-up thermal covers can be
rolled back by the servicer end effector and then the mission equipment

modules can be removed from the carousel.
+Y
/ Sun

/

+Z

i
E'\ ~ / \ \\/( Solar Array
+ X~ &ZTA .
~ 2.\ <_ ‘

<N | /
]
4!!!!qul‘wr ‘ﬁﬁg'.‘-~,
/

Docking
Port B i

Orbiter RMS Access for )

Handling Lobe Radial SRU . Antenna

Removal

Figure 7 Serviceable Characteristic Large Observatory
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The CLO represents one of the most complex spacecraft examined for
serviceability. By having the servicer system designers and the spacecraft
designers interact, it was possible to come up with a good serviceable CLO
design in a short time. The mirror assembly and optical bench components of
the telescope system are fixed in relation to the spacecraft structure. The
solar array is attached to the telescope housing permanently, as are the sun
sensor instruments. Five of the mission equipment instruments are mounted on
a carousel which serially positions each instrument detector in the telescope
focal plane. All five of these instruments are arranged in compact groups
permitting each to be a replaceable unit. In order to gain access to each of
the carousel-mounted ORUs, a single rotational position of the carousel is
assigned, where a "door" is furnished for the servicer to perform module

exchanges.

Spacecraft structure at the extreme -X end of the telescope accommodates
thirteen ORU modules with uniform dimensions, plus Docking Cone A. This cone
is used as the servicer docking contact for the thirteen ORUs, as well as for
the five focal plane instrument ORUs on the carousel. A window shade device
with thermal blanketing is used to close the opening during normal operation.
The servicer end effector is used to operate a worm gear mechanism to open and
close the shade. Six additional ORUs are carried at the opposite end of the
spacecraft. Docking cone B is provided on the -Z side of the telescope to
allow servicer access to this group. All 24 ORU use the side mounting

interface mechanism.

Figure 8 is an end view of the serviceable Characteristic Large Observatory
that shows most of the housekeeping ORUs. The axially-removed ORUs are
numbered from 2 through 13. The ORUs on the carousel are removed radially
through the access port shown in view B. The two TDRSS antennas are stowed
behind other ORUs for launch of the CLO. If their ORU must be replaced, the
TDRSS antenna will be deployed, at least partially. The carousel has a rim
drive mechanism, located in ORU No. 10. The electronics and gas storage for
the carousel-mounted focal plane crystal spectrometer are removed axially from
the center of the carousel (ORU No. 2). This location also has a roll-up

thermal cover actuated by the servicer end effector.
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Figure 8 Serviceable Characteristic Large Observatory On-Orbit

Replaceable Units at Aft Docking Port
The serviceable spacecraft designs were evaluated to obtain requirements for
the servicer configuration selection. During that evaluation a number of
serviceable spacecraft configuration implications became obvious.
Additionally, some of the servicer requirements became design constraints on
the spacecraft. Table 3 is a brief summary of the serviceable spacecraft
analysis results and the servicer system requirements as seen by Martin
Marietta. The rationale for the statements was given in the various IOSS

presentations or can be readily demonstrated as being desirable.

A tier of modules is a layer of modules generally in a common plane and
arranged so that all modules in a tier can be exchanged axially or all
radially. While this recommendation, and the related recommendation on

removal direction, are suggested to simplify design and operations, they are

not constraints. The servicer system can handle a mix of radially and axially

oriented modules. With regard to the interface mechanisms, which are the

structural connections between the module and the spacecraft, it appears
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Table 3 Serviceable Spacecraft Configuration Implications

o DOCKING SYSTEM
- CENTRAL
- NORMAL TO SOLAR ARRAY DRIVE AXIS
- MINIMIZE DOCKINGS PER SERVICE

® SHAPE AND STRUCTURE
- MAXIMUM OF TWO TIERS OF MODULES PER DOCKING
- USE AVAILABLE ORBITER CARGO BAY DIAMETER
- CONFIGURE FOR MINIMUM WEIGHT

e MODULES
- SERVICE BOTH SUBSYSTEM AND MISSION EQUIPMENT
- REMOVAL _DIRECTION - AXIAL OR RADIAL, HOT BOTH
- NUMBER OF MODULES - 10 T2 30
- MODULE SIZE - 15 IN. CUBE TO 40 IN. CUBE
- MODULE WEIGHT - 10 TO 700 LBS
- HAVE STANDARD LOCATIONS FOR SUBSYSTEM MODULES

o  INTERFACE MECHANISMS
- STANDARDIZE INTERFACE WITH SERVICER AND STOWAGE RACK
- AVOID THERMAL CONNECTORS REQUIRING CONDUCTION

desirable to permit the spacecraft designer to select his own configuration if
he chooses. The only constraints are that it interface properly with the

servicer mechanism end effector and the stowage rack.

As part of the serviceable spacecraft design work, the incremental costs of
designing spacecraft were estimated. Each of the team members prepared
estimates and the literature was also reviewed for incremental cost
estimates. The consensus result was that design and development costs would
be increased by 8% and unit costs would be increased by 4% of the

non-serviceable spacecraft costs.

Additional Technology Applications

As an example of the adaptability of the selected on-orbit servicer system,
various alternative servicing methods for a Multi-mission Modular Spacecraft
(MMS) were analyzed. The recommended method for remote, on-orbit servicing on
an MMS, such as the Solar Max Mission Spacecraft, was to use the standard
servicer configuration fitted with a straight docking probe adapter, a
modified Module Servicing Tool (MST) and a modified stowage rack (as shown in

Figure 9). The servicer docks with the MMS laterally, on its existing grapple
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fixture or on a grapple fixture/berthing pin combination that replaces an
existing berthing pin. An orientation joint, similar in design to the other
servicer joints, is included in the docking probe adapter to allow tilting of
the servicer with respect to the MMS after docking to bring the servicer
mechanism into a plane parallel to the face of the module to be exchanged.

The joint is powered through an electrical connection across the servicer
docking interface. This feature allows the simple, axial mode of operation of
the servicer without modifying its basic configuration. Either one of the two
modules adjacent to the grapple fixture can be serviced in one docking. No
modifications of the MMS modules or module retention system (MRS) are
required. Instead, a modified MST compatible with the existing MRS and with

the servicer standard end effector interface was recommended.

HIGH GAIN ANTENNA
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Figure 9 Servicing a Multi-Mission Modular Spacecraft

The I0SS functions of module exchange and umbilical connection for electrical
signal or fluid transfer are widely applicable to the Space Station as shown
in Figure 10. The sketch on the left hand side of the figure is an early
Martin Marietta concept for servicing of objects that are brought to the Space
Station. Examples of servicing functions that can be performed by the I0SS

are listed on the right.
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STAGING o ASSEMBLY PROCESS

noeltE o REPAIR OF SPACECRAFT

e PORTABLE MANIPULATOR

o EXPERIMENT INSTALLATION WITH MRMS
e EXPERIMENT SERVICING WITH MRMS

SERVICING FACILITY

e FLUID UMBILICAL CONNECTIONS
SERVICER STORAGE

e REPAIR OF SPACE STATION
e REPAIR OF OMY
e REPAIR OF OTV

FUEL DEPOT
OMV BERTHING RING

Figure 10 On-Orbit Servicer System At Space Station

The I0SS could be involved in the assembly process by bringing modules to
prepared locations on the deployed trusswork. The prepared locations would
also make it easy to replace any subsystems that subsequently fail.
Experiments located on the Space Station framework far from the habitation
modules could be installed and replaced when necessary using the servicer with
the mobile RMS. The IOSS umbilical connection capability could fulfill the
need to resupply both the OMV and the OTV. Another possibility, is to
incorporate the IOSS concepts into the warehouses that store replacement
modules much as trucks and fork-lifts are used in terrestrial warehouses.
These and similar concepts could be used to reduce EVA workloads, especially
those that are repetitive or hazardous. The intent of the ideas shown on the
figure is more to outline possibilities and to open up alternatives, rather

than to indicate recommended solutions.

The major conclusions of this work are:

1) The benefits of designing spacecraft for servicing are large compared to
the costs;

2) Spacecraft design can greatly simplify the on-orbit servicer system;

3) The serviceable spacecraft design technology can be directly applied to

the Space Station.
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GAMMA RAY OBSERVATORY ON-ORBIT SERVICING

D. A. Molgaard
TRW Space & Technology Group
Redondo Beach, California

ABSTRACT

The feasibility of performing on-orbit servicing of the NASA Goddard
Space Flight Center (GSFC) Gamma Ray Observatory (GRO) was initially
addressed by TRW during the later portion of the Phase C development con-
tract in 1981/82. At that time, the investigation was specifically task
limited to the potential for on-orbit replacement of selected mission-
critical subsystems or components. Because of the advanced state of the
design of the GRO scientific instruments at that time, any consideration
for on-orbit servicing/replacement of the instruments was not addressed.
Feasibility and concept definition tasks associated with the on-orbit
refueling of GRO were addressed when the GRO Phase D contract was awarded
early to TRW in 1983.

The GRO program completed its Preliminary Design Review (PDR) in May
1984, and Critical Design Review (CDR) in June 1985. The current GRO
design refliects a capability for on-orbit changeout of the two Multimission
Modular Spacecraft (MMS) modular power system (MPS) modules and the MMS
communications and data handling (CADH) module via EVA. A sketch showing
the GRO in a repair mission simulation, berthed to the FSS A-prime cradle,
is shown in Figure 1. In addition, the design incorporates a capability
for on-orbit refueling that is compatible with the JSC/Fairchild-developed,
EVA-operated refueling coupler and the JSC Orbital Spacecraft Consumables
Resupply System (OSCRS). The GRO design also incorporates a capability of
EVA override operations for the deployment, restowage, and jettison of the
GRO solar array and high-gain antenna appendages, the grapple fixture, and
the electrical umbilical interface. A sketch of GRO in a deployment mis-
sion configuration prior to appendage deployment is shown in Figure 2.

To validate the GRO EVA design compatibility prior to CDR, a series of
five separate astronaut-suited test runs were performed at the NASA/JSC
Weightless Environment Training Facility (WETF) using a high-fidelity full-
scale mock-up (FSM) of the GRO. These EVA simulation tests to evaluate the
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Figure 1. Refueling/Repair Mission Configuration: GRO on A-Prime Cradle

Figure 2. GRO Deployment on RMS

135-057-85 51



GRO on-orbit servicing compatibility were supported by five astronauts, all
with prior flight EVA experience. The tests were performed from 5 March to
3 April 1985.

INTRODUCTION

The studies performed by TRW to determine the feasibility of on-orbit
servicing, repair, and refueling were performed under a very specific set
of NASA assumptions and ground rules. The GSFC GRO Project Office was (and
is) under heavy pressure to maintain program costs and schedule commitments
established before the on-orbit servicing discussions were initiated. NASA
headquarters initiated the first request to the GSFC GRO Project Office to
investigate on-orbit servicing for GRO. No additional funding was pro-
vided, however, to support the feasibility studies or the subsequent design
and implementation efforts.

The selection of the MMS power and communications modules for incor-
poration into the original baseline design was recommended by TRW during
the later portion of the GRO Phase B concept definition contract. This
selection was recommended principally as a program cost savings, i.e., to
use an existing, qualified, flight-proven design. The attendant on-orbit
replacement capability of these modules was not, at that time, considered
to be a significant advantage to the GSFC GRO project. The conceptual
design of GRO during the majority of the Phase C design definition phase
did not include any provision for astronaut EVA involvement in either a
planned or contingency support operational role. As an amendment to the
Phase D RFP, TRW was asked to identify design modifications and costs
associated with incorporating an on-orbit EVA module changeout capability
for the power and communications modules, and an EVA-supported appendage
deployment manual operation as a contingency should the automatic deploy-
ment system fail to operate. In addition, the amendment to the RFP asked
to identify the design and cost impacts for making GRO retrievable by the
orbiter. These initial maintenance EVA override, module replacement, and
orbiter retrievability features were incorporated into the Phase D contract
Statement of Work to TRW in February of 1983. Commensurate with the start
of the Phase D contract, the GSFC GRO Project Office directed TRW to per-
form a feasibility and concept definition study to establish technical,

3
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cost, and schedule impact for incorporating an on-orbit refueling
capability for GRO. The study was completed in 90 days, and the GRO
Phase D contract was modified in June 1983 to incorporate an on-orbit
refueling capability into the baseline GRO design.

GRO DESCRIPTION

A summary of the GRO program milestone is shown in Table 1. Figure 3
is a summary GRO project schedule. The GRO mission objectives are summa-
o rized in Table 2 and the overall mission concept is depicted in Figure 4.

Table 1. GRO Program Summary

Sponsor: NASA (Office of Space Science)
Customer: NASA Goddard Space Flight Center
Mission contractor: TRW
Program chronology:
® Mission need statement issued in May 1978
e Phase 1 studies conducted in 1980
e Program approval document issued in February 1981
* e Phase C contract from April 1981 through September 1982
e Phase D contract from February 1983 through mission end
~ e PDR in May 1984
® NASA/JSC WETF testing February to April 1985
e CDR in June 1985

e Launch in May 1988. Inclination 28.5 degrees; mission
altitude 350 to 450 km

o Two-year science mission

e STS retrieval return from orbit (1990+)
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Figure 3. GRO Project Schedule

Table 2. Mission Objectives

Study dynamic evolutionary forces in compact objects such as neutron
stars and black holes

Search for evidence of nucleosynthesis
Investigate gamma-ray-emitting objects whose nature is not understood

Explore our galaxy in the gamma-ray range, particularly with regard to
regions difficult to observe at other wavelengths

Study the nature of other galaxies in the energetic realm of gamma rays

Study cosmological effects through detailed examination of the diffuse
radiation and the search for primordial black hole emission

GRO On-Orbit Serviceability

As previously mentioned, program cost considerations significantly
limited detailed investigations and conceptual design efforts to establish
additional on-orbit servicing capabilities, e.g., component/module or sub-
system changeout. The GRO design proposed for the Phase D development
contract incorporated extensive use of qualified, flight-proven hardware
that was in many instances not readily modifiable to an ORU configuration.
A subsystem component reliability analysis was performed on the GRO

5
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Figure 4. GRO Mission Concept

attitude control and determination (ACAD) subsystem to establish data on
mean time before failure rates and determine what components, if any,
should be considered as candidates for on-orbit replacement. Considering
the 2-year nominal mission lifetime, this analysis showed that no single
component within the ACAD subsystem should be designed for on-orbit
replacement, and the overall ACAD subsystem reliability numbers supported
the same conclusion. At the start of the Phase D contract, the two MMS
power modules and the MMS CADH modules were baselined as the only GRO on-
orbit replaceable components/subsystems.

Deployment Mission — Initial Maintenance

The studies performed near the completion of the Phase C contract
suggested that an improvement in mission reliability could be achieved if
certain mission-critical automatic appendage deployment functions could
incorporate an EVA override feature. As part of this effort, a motor-

driven appendage release and deployment system was incorporated in place of

the original ordnance-activated, spring-release system. Manual EVA

6
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wrench-actuated overrides were incorporated into the gear drives of the
motor-driven appendage release and deployment mechanisms on the two solar
arrays and high-gain antenna booms.

Deployment/Retrieval Mission EVA Evaluation

The anticipated planned and contingency EVA operations for both the
GRO deployment and retrieval missions are similar. If a solar array or
high-gain antenna appendage mechanism fails to perform satisfactorily, an
astronaut in EVA, using standard wrenches and tethers, can override the
electrical drive motor and deploy or restow the affected appendage.

To perform most of the EVA operations that may be required on the GRO
deployment mission, the EVA test crew will not have the RMS/manipulator
foot restraint (MFR) available; the RMS is being used in conjunction with
the GRO grapple fixture to hold the GRO above the open cargo bay. Al1l of
the EVA operations associated with solar array or high-gain antenna append-
age latch release and deployment must be performed using the portable foot
restraint (PFR) units presently in the orbiter inventory. An EVA opera-
tional flow is shown in Figure 5.

POSITION GRO IN
PROXIMITY TO
RMS CARGO BAY
SILL AND RIGIDIZE

UNSTOW EVA ASTRONAUT OVERRIDE REMOTE
IVA-1 SUPPORT MOVE TO GRO, SYSTEM AND
EQUIPMENT INSTALL PFR MANUALLY DEPLOY
SOLAR ARRAY USING
PREPARE HANDTOOL
FOR EVA EVA-1 EVA-1 EVA-1

EVA-1
VERIFY STATUS
AND RELEASE
GRO FROM RMS
ASTRONAUT STOW SUPPORT
MOVE TO STS EQUIPMENT 1IVA-1
POST EVA
EVA-1 EVA-1 ACTIVITIES
EVA-1

Figure 5. GRO Deployment Mission EVA Flow Chart
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These EVA override operations using the PFRs were rehearsed as part of
the GRO FSM WETF activities. As a result of these tests, a change was
incorporated into the flight design of the GRO solar array appendage to
provide improved access to the array jettison bolts. In addition, the crew
personnel recommended that additional handrails and foot restraint sockets
be added to improve EVA accessibility. This hardware has been incorporated
into the flight design.

Repair/Refueling Mission EVA Operations

The G§6yagggéﬁhfﬁc6rpbrates the capability for on-orbit replacement of
either of two power modules and/or the communications and data handling
(CADH) modules. The mechanical design of these modules is identical to
that of the GSFC-developed MMS modules previously flown on the Solar Max
and Landsat missions. A sketch of the module is shown in Figure 6. The

<

Figure 6. MMS MPS and CADH Module Configuration
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recent successful STS/Solar Max repair mission validates the on-orbit
changeout capability of this package design as well as the support tools
and hardware/software used in the operation.

To assure GRO/orbiter refueling interface compatibility, GRO personnel
have maintained close communications with the NASA/JSC propulsion branch
personnel within the engineering directorate. This task involved the
review/critique of the original requirements and SOW documentation for both
the on-orbit refueling coupling (payload/orbiter propellant interface) and
the OSCRS. The coupling is currently in final development by Fairchild
Controls, and the OSCRS program is currently in an 8-month preliminary
design study with five contractor teams participating. The current cou-
pling design reflects design improvements that were incorporated as a
result of the GRO OOR EVA WETF evaluation testing performed early in 1985
and repeated in June of 1985. The OSCRS RFP/SOW specifically addresses the
requirement for compatibility with the GRO propulsion subsystem. JSC is
currently planning on the initial OSCRS development and operational readi-
ness by 1990.

Repair/Refueling Mission EVA Evaluation

Of primary concern in the EVA box changeout operations simulated in
the WETF testing was the establishment of crew translation routes between
the box location on GRO and the box storage location on the FSS A-prime
cradle used to berth the GRO during these operations (Figure 2). A mock-up
of the on-orbit refueling coupling had been installed on the GRO structure
prior to the start of the FSM WETF activities. One of the EVA tests was
devoted to establishing the preferred position for the astronauts during
the refueling coupling mate and demate operations. This test was also per-
formed with GRO berthed to the FSS A-prime cradle in the actual mission
simulation configuration. Specific astronaut recommendations for EVA
design enhancement for support of GRO repair/refueling mission operations
included the addition of handrails and portable foot restraint sockets in
specific locations and a requirement for an EVA-installed handling fixture
for moving the modules between the worksite locations. In addition, an
area of interference between the GRO integral berthing adapter structure
and the FSS A-prime cradle latch motor case was identified. The GRO struc-
ture will be modified to eliminate this interference.

9
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GRO/STS Interfaces

Table 3 provides a summary of the GRO/STS interfaces for each of the
three missions. Figure 7 graphically identifies these interfaces.

Table 3. GRO/STS Interface Summary

!
INTERFACES DEPLOYMENT | pipueime | RETRIEVAL

S 1. STANDARD FIVE-POINT ACTIVE X X

_ TRUNNION INTERFACE

2. DEPLOYMENT, BERTHING, AND X X X
RESTOW USING RMS/GRAPPLE FIXTURE

- STANDARD INTERFACE

3. BERTHING TO FSS A PRIME CRADLE X
VIA GRO INTEGRAL BERTHING
ADAPTER

4. ELECTRICAL POWER AND HEATER X X X
CONTROL THROUGH AESE

5. STANDARD UMBILICAL RELEASE X X
SYSTEM (SURS) POWER AND SIGNAL
INTERFACE

6. PF1 MDM INTERFACE DURING IN-BAY X X X
POWER-OFF OPERATIONS

7. PI/PD! INTERFACE FROM CADH TO X X X
TDRSS/MCC/POCC VIA LGA

8. AFT FLIGHT DECK (AFD) STANDARD X X X
SWITCH PANEL (SSP) FOR GRO POWER

CONTROL AND SAFETY STATUS
MONITORING

9. FHST SHUTTER CONTROL FROM SSP X X X

10. AUXILIARY EVA UMBILICAL FOR X

- MONITORING OF CRITICAL OOR
PARAMETERS

11. PLANNED AND UNSCHEDULED EVA

® APPENDAGE DEPLOYMENT/ X X
RESTOW/JETTISON

L) e ORU (MPS, CADH) CHANGEOUT X
® REFUELING X

GRO FOLLOW-ON SERVICING POTENTIAL

When the GRO has completed its scientific mission, it could be used as
a spacecraft on which to conduct technology demonstration and crew training
to advance on-orbit satellite servicing. With the Space Station as the
host vehicle, a series of servicing technology development missions (TDM)
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Figure 7. GRO Electrical/Mechanical Interfaces with Orbiter

is envisioned. The technology considerations, benefits, Space Station
requirements summary, and scenario highlights are listed below:

1) Technology considerations
e EVA construction/disassembly
e On-orbit fluid transfer/storage
o OMV operations
® Part replacement
e Contingency service operations
e On-orbit system/subsystem test
® Satellite retrieval
e Advanced crew support technologies
2) Benefits
o Extension of life of GRO

o Applicable to repair/refurbishment of many other spacecraft

11
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3) Space Station requirements

o Mechanical and electrical support equipment

o Crew support equipment

e Refillable propellant tanks

o Special crew training

e Autonomous mission support systems
4) Scenario highlights

e GRO retrieval from 400 km orbit

o Comprehensive status tests

e Refurbishment/repair of units

e Propellant refill

e Comprehensive checkout

e Redeployment into operational orbit.

TDM Description

The objective of the TDM is to demonstrate the capability .to service a
low earth orbiting satellite, in this case the GRO, at the Space Station.
Such servicing will extend the useful life of the spacecraft. GRO was
picked as an example.

Because of its great size, special arrangements must be made to ser-
vice the GRO at the Space Station. It would be desirable to attach the GRO
to the servicing shelter cargo rails with the “skin" of the shelter
removed. This would permit the use of extended payload retention latch
assemblies (PRLA) to allow adequate space for the refueling operation and
access to orbital replacement units (ORU).

Sequence of Events

The Orbital Maneuvering Vehicle (OMV) "flies" out to rendezvous with
the GRO, attaches to the grapple fixture (located above the trunnion
mount), and maneuvers the spacecraft toward the Space Station. To facili-
tate this operation, the grapple fixture must be oriented toward the GRO
center of gravity.

12
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When the GRO is very near to the Space Station, the module manipulator
system connects to the OMV grapple fixture. An astronaut in a manned
maneuvering unit goes out and mounts a portable grapple fixture to the end
of the GRO satellite. A handling and positioning aid (HPA) can be attached
to this portable grapple fixture to secure the spacecraft while the OMV is
demated from the permanent grapple fixture and stored using the module
manipulator system. The combined capabilities of the module manipulator
system and HPA can then be used to position the GRO against the PRLAs
attached to the cargo rails. Attachment will be made remotely from inside
the Space Station.

The next step is changeout of an orbital replacement unit. The type
of unit to be replaced will be determined at the time the demonstration is
planned, based on requirements to extend the life of the spacecraft. If
solar arrays need to be replaced, the entire array, including its drive
assembly, will be changed out. If no subsystems require replacement, a
standard command and data handling module could be changed out to demon-
strate the technique. ORU changeout will be performed by two suited astro-
nauts using portable handholds and foot restraints, wing tab connectors,

and the module manipulator system and HPA.

After the changeout, the astronauts will set up a fueling kit and
position the fueling (and pressurizing) connector(s) against the fueling
port and hold it (them) there with the HPA (and module manipulator system).
The astronauts then return to the Space Station and the coupling of the
fuel connector is completed remotely. This reduces the risk of space suit
contamination, enchancing crew safety.

After refueling, fuel lines are evacuated and uncoupled from the
spacecraft. Then the OMV is mated to the spacecraft, the portable grapple
fixture is removed, and the GRO is returned to optimum low earth orbit.

Benefits and Applications

This TDM will demonstrate the capability to retrieve a LEO spacecraft,
bring it to the Space Station, perform necessary servicing, and return it
to the optimum orbit, thereby extending useful satellite life. This capa-
bility has applications to virtually all LEO satellites, and will enable

13
135-057-85 62




more sophisticated servicing operations that can be performed by remote (in
situ) operations or by servicing with the STS orbiter.

The increased capability enabled by satellite servicing at the Space
Station provides the following benefits.

1) The spacecraft can be disassembled for access to connectors,
sensors, and other equipment (the service platform provides
room for storage and tie-down during servicing operations).

2) Llarge, complex components, such as solar arrays, can be
- ~_replaced or refurbished and tested prior to spacecraft
© - redeployment .

3) Spacecraft optical, thermal, and solar array surfaces can be
cleaned or refurbished.

-

4) Large, fragile spacecraft (those assembled, tested, and
inserted into orbit from the Space Station) can be serviced
with reduced risk of damage.

In addition to the increased servicing capability, the following
benefits can be realized.

1) The spacecraft capability can be upgraded by retrofit to pro-
vide, for example, more power from increased solar array area
and/or more battery capacity, more accurate stationkeeping with
improved sensors, and more reaction control capacity from added
fuel capacity.

2) The spacecraft mission can be altered by replacing existing
experiments or functions with others.

-

3) The spacecraft orbit can be changed with appropriate sensor

changes and reinsertion into the new desired orbit via the OMV.
L Special Considerations

This TDM is baselined using the GRO as the service object. While the
GRO is being designed for limited on-orbit servicing via the STS orbiter,
several special considerations are applicable for Space Station servicing:

1) The grapple fixture (used to remove the GRO from the orbiter

payload bay) must be oriented toward the center of gravity of
the spacecraft to permit retrieval and reboost by the OMV.

2) The GRO design must include provision for attaching a second
(portable) grapple fixture for handling at the Space Station.

3) The GRO refueling equipment to be used by the orbiter must be
compatible with Space Station capabilities.

14
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DESIGN EXPERIENCES IN DEVELOPMENT OF
EVA SERVICEABLE INSTRUMENTS FOR THE
HUBBLE SPACE TELESCOPE

Paul C. Brickmeier and Terence A. Facey
The Perkin-Elmer Corporation, Danbury, Connecticut

ABSTRACT

The Science Instruments and Fine Guidance Sensors of the Hubble Space
Telescope are EVA serviceable at the module Tlevel. Precision alignment of
these EVA replaceable modules is critical to system performance. Development
of the mechanisms (registration fittings) to accomplish repeatable alignment
is a significant accomplishment. The design requirements, features and
realized performance of these registration fittings are presented in this
paper.

INTRODUCTION

The Hubble Space Telescope is comprised of a Ritchey-Chretien Cassegrain
Telescope and the five Science Instruments and three Fine Guidance Sensors
that simultaneously share its partitioned aplanatic focal surface. Each of
the Science Instruments and Fine Guidance Sensors, referred to as instruments,
is EVA replaceable. Since each instrument must be precisely Tlocated with
respect to the telescope focal surface, a mechanism for facilitating
replaceability while maintaining precision positioning had to be developed.

As finally configured, each instrument 1is supported by three, or four
registration fitting pairs. Each fitting pair serves to constrain the
instrument in one or more translational axes; in aggregate the fittings
constrain each instrument 1in six degrees of freedom with respect to the
telescope structure.

EVA removal of each instrument is accomplished by release and translation of
the instrument out of the telescope through doors in the spacecraft skin.
Since each instrument is quite large, weighing 2224 to 3114 Kg's (500 to
700 pounds) and having a maximum dimension of 1.5 to 2.1 meters (5 to 7 feet),
guide rails are provided to assist the crewmen in controlling the unit.
Replacement is accomplished by reversing the process. The general arrangement
of the instrument and the telescope is shown in Figure 1.

DESIGN REQUIREMENTS

The key design requirements associated with EVA replaceability are position
repeatability and crew systems compatability. Satisfactory alignment of the
telescope instruments requires control of many error sources including initial
alignment, residual launch deformations, thermally induced distortions,
tooling and measurement errors and, in the case of EVA replaceable
instruments, position (alignment) repeatability.

-1-

64




Figure 1.

Hubble Space Telescope configuration
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Total position error for an optical instrument is traditionally presented as
being comprised of despace, decenter, and tilt components. Despace is a
measure of position error along the telescope optical axis and directly
corresponds to errors in focus. Decenter is a measure of position errors
orthogonal to the optical axis. Tilt is a measure of angular alignment
deviations relative to the telescope optical axis.

It was necessary to limit the magnitude of the axial and radial science
instrument position repeatability error to approximately 25% of the maximum
allowable position (alignment) error requirement as set forth in the telescope
alignment error budget. The Fine Guidance Sensor contains a wavefront sensor
to assess the telescope wavefront quality. Wavefront sensor performance
requirements dictate closer overall control of positioning of the Fine
Guidance Sensor instruments and repeatability error contributions were
allocated a larger portion (approximately 75%) of the maximum allowable
position error requirements.

It should be noted that over the course of the program, considerable effort
was expended to control other error contributors to allow a twofold increase
in the repeatability error allocation.

MAXIMUM ALLOWABLE INSTRUMENT POSITION (ALIGNMENT)
DUE TO ALL SOURCES

INSTRUMENT DESPACE DECENTER TILT
(v m) (v m) (arc sec)
Axial Scientific 153 153 30
Instrument(s) (0.006") (0.006")
Radial Scientific 254 102 74
Instrument (.010") (.004")
Fine Guidance Sensor(s) 51 64 10 Tangential
Axis
(0.0020") (0.0025") 20 Radial
Axis

Note: Unless otherwise stated these decenter and tilt error budgets, as
specified, are applicable to each of the two applicable orthogonal components
separately.

The crew systems compatability requirement dictated simplifying the actions
required by the crewmember to disengage/engage each instrument from the

telescope. It was desirable, if not mandatory, to provide guide rails and a
common interface for crewmember actuation of instrument retention
mechanization.

Other design requirements that significantly influenced the resulting design
solution are launch loads, stiffness, alignment thermal stability, thermal

conductivity and residual moment constraints. The following tabulation
presents the nominal range of requirements for the registration fitting pairs.
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CHARACTERISTIC NOMINAL RANGE OF REQUIREMENTS

Launch Toad induced RESULTANT 13,300 - 22,200 N

FORCE for a registration fitting (3,000 - 5,000 1b.)

pair

STIFFNESS of a registration 20.5 X 10°% to 42.9 x 106 N/m
fitting pair (117,000 to 245,000 1b/in)
ALIGNMENT THERMAL STABILITY 0.0013 arc sec over 24 hours

contribution of an instrument
complement of registration

fittings

THERMAL CONDUCTIVITY .05 to .08 w/°C maximum
RESIDUAL MOMENT for 31 to 54 NM Maximum

a fitting pair (23 to 40 ft-1b)

In aggregate, these requirements force the designer to make numerous design
trades in reaching an acceptable design solution.

DESIGN DESCRIPTION

The registration fitting complement for each instrument 1is designed to
nominally provide a kinematic mount in six degrees of freedom. Except for
comparatively small residual friction and/or preload mechanization
torques, moments are not carried across a fitting pair.

Each of the registration fitting pairs embodies a ball-in-socket design which
provides a self-alignment capability, and insures a nominally statically
determinate interface with low-moment load transfer. A functionally similar
design, incorporating flexures in lieu of the ball-in-socket, was considered,
but envelope, strength, stiffness and thermal conductivity constraints

precluded such a design solution.

AXIAL INSTRUMENT REGISTRATION FITTINGS

The instruments known as Axial Science Instruments are each supported in the
telescope by three registration fitting pairs (Figure 2). The "A" fitting
pair (Figure 3) restrains the instrument 1in three degrees of freedom. A 44.5
mm (1.75 in) diameter ball is mounted to the instrument and its mating
spherical seat is mounted to the telescope structure. The spherical seat is
segmented and mechanized to allow opening by the crewmember via a screwdrive
to allow acceptance of the ball and subsequent closing to capture it.
Ball-to-seat fit is maintained at 1.9 to 3.8um (75 to 150 uin) so as to insure
rotational freedom without producing large amounts of free play. Ball-to-seat
radial fits of other registration fittings are similarly toleranced. In the
launch environment excessive free play could produce significant shock loads
at the interface. The ball and seat are 440C stainless steel and tungsten
carbide/cobalt coated titanium respectively. Lubricated with Braycote 3L38RP,
this material combination assures low friction torques and high galling
resistance.
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The "B" registration fitting pair (Figure 4) is mounted at the other end of
each Axial Instrument and consists of a fully captured ball-in-socket mounted
to the instrument and a spring-loaded restraining pin mounted to the telescope
structure. The "B" fitting pair restrains the instrument in two degrees of
freedom.

The pin preloads the instrument into the "A" latch with 3,559 Newtons (800
1bs.) of force, thus maintaining positive registration in both ground test and
orbital environments. High preloads tend to reduce registration repeatability
errors but induce higher friction torques. The existing preload reflects a 27%
reduction necessary to achieve residual moment requirements.

Lastly, the Axial Instrument "C" registration fitting pair (Figure 5) provides
restraint in a single degree of freedom. A self-aligning cylinder is mounted
to a ball structurally mounted to the instrument. A mating receptacle,
consisting of a flat and a parallel flexure, is mounted to the telescope
structure. The flexure is designed to provide a preload sufficient to insure
proper registration during operational modes only. Flight loads are supported
by snubbing the flexure 64 um (0.0025 in) beyond its normal rest position.

A tungsten carbide/cobalt coating is applied to the 15-5 PH steel flexure to
prevent galling and the fitting pair interface 1is Tlubricated with Braycote
3L38RP.  The fitting pair self-aligns and mates when the instrument is
translated in the +V1 direction. It should be noted that this construction is
typical of the "B", "C" and "D" fitting pairs that mount the Radial Science
and Fine Guidance Instruments.

The Axial Instrument "A" and "B" registration fitting screw drives are
separately actuated by the crewman with a torque-limiting socket wrench.
Torque is transmitted from the drive point, at a convenient location on the
telescope structure, to the fitting screw drive through drive rods with
universals at each end. The "A" and "B" fitting drive torques are 60 NM (44
ft-1b) and 10 NM (7.5 ft-1b) respectively.

On-orbit removal of the Axial Instruments is accomplished by retracting the
"A" and "B" Registration fittings followed by translation of the instrument in
the -V1 direction and subsequent guided translation out through vehicle doors.
Instrument installation is accomplished by reversing the process.

RADIAL INSTRUMENT REGISTRATION FITTINGS

The Radial Science Instrument and each Fine Guidance Sensor are supported in
the telescope by three and four registration fitting pairs respectively. In
each case the "A" fitting pair restrains the instrument in three degrees of
freedom (Figure 6). A truncated 50.8 mm (2.000 in) diameter ball-in-socket is
mounted to the telescope structure. The ball contains a threaded hole that
serves as the fastening interface with the instrument-half of the registration
fitting pair. A registration preload of 1245 N (280 1bs) is maintained at the
“A" registration fitting via flexure springs that span between the fitting

halves. The Radial Instrument "A" fitting pair is shown in Figure 7.

The Radial Science Instrument "B" registration fitting pair and the balance of

the Fine Guidance Sensor registration fitting pairs are single axis constraint
fittings similar to the Axial Instrument "C" fitting pair described earlier.
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Figure 4.
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Axial instrument "B" registration fitting pair
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Figure 5. Axial instrument "C" registration fitting pair
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Figure 7. Radial instrument “"A" registration fitting pair
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While design details vary, the Fine Guidance Sensor "B" and "C" fittings
(Figure 8) are representative of design implementation.

The Radial Instrument "C" registration fitting differs from the "B" fitting in
that it is a double constraint fitting incorporating two, orthogonal,flat and
flexure pairs.

Only the "A" registration fitting requires "actuation" to remove or install a
Radial Science Instrument or Fine Guidance Sensor; all other fittings self-
align and engage as the instrument 1is radially translated. The "A"
registration fitting pair screwdrive is driven through a solid drive rod
extending through the instrument to its periphery where the crew member
applies the required 60 NM (44 ft-1b) of actuation torque. As the pair is
mated, the flexure springs are deflected resulting in the application of the
registration preload of 1245 N (280 1b) across the "A" fitting pair.

PR L YA

R REALIZED PERFORMANCE

Prior to delivery of the Optical Telescope Assembly in November 1984,
development and verification tests were completed and confirmed the ability of
the registration fittings to repeatedly position the EVA replaceable
instruments within system requirements.

Realized worst-case despace, decenter, and tilt performance for each of the
three instrument types were measured using instrument structural simulators
having flight configured registration fittings. The data presented is the
maximum-recorded repeatability error observed in three to five installation
and removal sequences.

MAXTMUM-MEASURED REPEATABILITY ERROR

INSTRUMENT DESPACE DECENTER TILT
(um) (um) (arc sec)

Axial Scientific 15.3 15.3 2

Instrument(S) (0.0003") (0.0013)

Radial Scientific 20 38 5

Instrument (0.0008") (0.0015")

Fine Guidance Sensor(S) 36 33 4 Tangential Axis
(0.0013") (0.0013") 4 Radial Axis

NOTE: Unless otherwise stated, decenter and tilt values are the maximum-
measured values from one of the two separate applicable orthogonal components
of error.

Crew systems compatibility has been verified in neutral buoyancy testing
conducted at the Marshall Space Flight Center. The test program used high
fidelity simulators of the telescope/instrument structures and registration
fittings that were mechanically identical to flight hardware. One observation
made during the neutral buoyancy test program was that since most of the
structures and instruments are coated flat black for stray light control, it

-12-
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Figure 8. Fine guidance sensor "B" and "C" fittings
-13-
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is difficult for a crewmember to observe their position. A system of
switches and verification lights was subsequently added to the flight hardware
design as an aid in establishing proper positioning of the instruments and
during the installation process.

CURRENT PROGRAM STATUS

The full complement of instruments has been installed in the telescope and the
integrated vehicle is proceeding through functional and environmental testing.

-14-
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PHYSICAL AND FUNCTIONAL PARTITIONING FOR
IMPROVED SPACECRAFT SERVICEABILITY

Robert R. Nelson
William B. Stewart

ARINC Research Corporation

Space Systems Program

4055 Hancock Street

San Diego, CA 92110
Interface standards are extensively employed by the aircraft
and airline industry as building blocks for avionics
architectures., Standards for interfaces are established for
interface busses, power, instruction set architectures, heat
dissipation envelopes, and physical interchangeability. These
standards are developed and embraced jointly by the developer and
operator. The ARINC Companies have been a primary participant in
this achievement. We believe that the ARINC Companies airline
experience provides the model for the space industry through the

year 2000 and beyond,

Interface standards are required now for spacecraft. The
Air Force has implemented policies to ensure that standardization
of interfaces is included in on-space refueling and repair.1
NASA awarded a contract to for the development of a fluid
coupling connector 2 which promises to become a defacto standard.
NASA has had successes in on-orbit repair and have recently
completed several studies and workshops on this subject. The

AESS Newsletter of September 1984 featured NASA's "Lessons

Learned From Solar Maximum Repair".3
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Significant progress in the development and application of
standards will not be made until industry achieves consensus on
the physical and functional partitioning of spacecraft
subsystems. Benefits can then be gained from the establishment
of interface standards which will extend to and beyond on-orbit

servicing.

BACKGROUND

On-orbit servicing is of primary importance to DoD and NASA.
Current satellite systems are having on-orbit maintenance
accomplished. Future systems are being planned with on-orbit
maintenance and servicing required. The Washington Post implied

the SDI demands on orbit maintenance.4

These concepts will have an important impact on commercial
applications of space systems. Demonstrations of on-orbit
retrieval and repair have been accomplished. As the desired
result, many are aware of the successes, also the problems
encountered. Both Westar and Palapa were retrieved, The Solar
Maximum Mission satellite's attitude control system and
coronagraph polarimeter subsystems were replaced in the shuttle's
cargo bay. Earlier, the Skylab crewmembers accomplished
scheduled and unscheduled maintenance activity on-orbit.
Maintenance has been performed during missions of the Satellite
Transportation System. The Soviet Union's space program includes

numerous examples of repairs and servicing, with a recent fluid



transfer operation in the news.

The economic benefits of on-orbit servicing have been
evaluated by analytical techniques including NASA cost and
operational effectiveness models. DoD has a computerized
spreadsheet capability (SATSERV) for examining economic and
logistics aspects of launch and on-orbit servicing. Such models
and techniques have been used to project the effectiveness of
servicing space systems. H. O. Builteman concluded that the user
community could avoid $13,000,000,000.00 in cost through 2005
through the use of on-orbit servicing.S This projection did not

the Strategic Defense Initiative (SDI) concept.

Satellite servicing analysis requires definition of the
categories of space systems. The physics of the problem
differentiate between high and low earth, geosynchrous, polar,
and orbits at various inclinations, etc. Satellite systems are
stable, rotating, etc. As such, an analysis of these categories
is required, for the current and the future timeframe, NASA,
DoD, NOAA (National Oceanic and Atmospheric Administration), and
U.S. commercial and foreign institutions recently projected 63
missions between 1986 and 1993 that can be reached by, or can fly
down to, the Space Shuttle Orbiter. 6 Of these, 33 were deemed
to be potentially serviceable on-orbit; 12 on a regular or
scheduled basis. The Orbiter currently has an altitude limitation
of 340 miles / and is limited during the powerless glides back to
earth in cross range to less than 1,000 miles. Operational

analysis has indicated that it will not be feasible to maintain a
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large operational system, such as SDI, without on-orbit servicing

capability.

Space system design is key to the accomplishment of such
servicing and repair actions as stated by H., T. Fisher, "... the
dissemination of succinct, easily understood, and well
illustrated design guidelines to assist the total systems and
design .team in the development and evolution of an easily

serviceable system." 8

The specific intent of this paper is to propose that a
Spacecraft Interface Standard is a specific and important

component of the design guidelines as described by Fisher.

This will lead to a degree of standardization in design
while still providing the flexibility required to accommodate the
state-of-the~-art technology; will enhance insertion of new
technology into on-orbit systems through modular subsystem

replacement; and will facilitate on-orbit servicing.

FORM, FIT, AND FUNCTION ig;l

In the aircraft business, we started the standardization
program with form and fit requirements, and developed an
information transfer bus that allowed electronic devices to
interface and communicate. It was found that it is difficult to
size a standardized replaceable unit and its communications bus

until its function has been defined. In the case of space
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systems, the replaceable unit will be called an Orbital
Replaceable Unit (ORU)., The problem was solved for aircraft by
defining the smallest possible functional building block, then
allowing for modular increases in size. The size limit of the
largest Line Replaceable Unit (LRU) was based on human factors

considerations. In space greater masses can be considered.

The objective is to establish spacecraft systems form, fit,
and function (F3) standards. A function such as a power supply,
mass memory unit, or fluid transfer pump would meet volumetric,
heat dissipation, attachment, and electrical interface
requirements. The designer can choose details and concepts of
the ORU design, however the part will be interchangeable., Design
flexibility to accomodate alternative concepts and technology is

encouraged.

Full F3 standardization has not been achieved in the
aircraft business., Commercial airlines have had the most success
with F3 standards established for roughly 70%Z of the avionics
suite., The military has less F3 standards experience, however
form, fit, environmental, and bus interface standards are being

pursued.

Avionics Interface Design Standards have been developed for
the U.S. Air Force by the ARINC Companies. Proposed DOD-STD-1788
provides for F3 standards for aircraft. Figure 1 illustrates the

maintainability benefits of such standardization, using the F-15
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aircraft avionics bay as the example. The figure shows the
current avionics bay configuration. Also shown is how the
installation would look if DOD-STD-1788 had been imposed.9 The
standard requires rear-mounted, low insertion force connectors
and clutch-equipped extractor/hold-downs for ease of box

replacement.

Reliability .factors are also addressed in DOD-STD-1788.
Thermal environment, vibration, load, other reliability related
interfaces between the aircraft and the avionics are defined.
The new standared is currently being used on several military

aircraft which are now in the design stage.

The airline precedent to DOD-STD-1788, ARINC 600 10 is used
on the Boeing 757 and 767, the Airbus 300 series, and the Douglas
Super~80 aircraft series. The definition of interfaces contained
in aircraft-related interface standards, such as MIL-STD-155311

and ARINC 429 12 jpeeds to be established for spacecraft systems.

Progress is being made. Figure 2 is from the NASA sponsored

Satellite SefvfcevHandbook - Interface Guidelines 13 4 marked

similarity exists between the ORU, the aircraft avionics rack,
and the DOD-STD-1788 panel-mounted LRU. NASA has established
installation design parametrics such as human factors clearance

envelopes and hold-down devices.



Multiple connectors
per LRU

Cables interfere with
box removal; invite
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failures DOD-STD-1788 Installation
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low-insertion
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Figure 1. Fackaging and Maintainability Benefits

of Interface Standardization
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Figure 2. Orbital Replaceable Unit (ORLW)
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The primary interface standards are for:

- Mechanical interfaces (indludes connectors)
- Thermal envelopes/interfaces

- Power interface

— Information transfer bus

- Functional partitioning

- Testability interface

- Service access/human factors considerations

- Electrostatic discharge protection
il Do RS e

Functional partitioning and testability are related and

» critical to the success of on-orbit servicing. The aerospace
community tests by function. When functions are distributed over

more than one ORU, unambigious fault isolation is difficult, The
determination of the ORU functions and testability are critical
technical issues. Analytical tools are available to examine the
testability consequences of alternate partitioning strategies.14

The technology of defining built-in-test versus remote

maintenance monitoring (RMM) requirements is well developed.15

ADHERE TO THE STANDARD

The willingness of the designer to adhere to the defined
standards must be recognized in the development of the standard.
The lesson learned by the ARINC Companies is that the process for
establishing the standard must include the designers of the
hardwarel®, The first precept is that the standard must be
established in an open-forum environment including the users and

suppliers. A neutral arbitrator (not a user or supplier) must be

8
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selected to recommend a position when consensus cannot be
achieved. The ARINC Companies unique non- user and non-supplier
position and the reputation of being unbiased and impartioal has
allowed effective utilization in the role of the neutral
participant during the development of a large number of

commercial and military standards.

We have found consensus in industry partitioning and
packagaging methodologies. Differences are ofter just the result
of arbitrary decisions. One firm may use a 4" x 5", 250 pin
electronic assembly, while another uses a 3-1/2' x 6", 225 pin
unit, The differences are just large enough to cause the
operator and maintainer to pay separately from limited resources

for the development, operation and logistics of each.

Consensus can be achieved. The suppliers and operators both
must perceive potential benefits from the standards. In the
aircraft industry, suppliers have found that standards permits
participation in a larger marketplace. Interface, rather than
piece part or detailed design standards permits the designer to
be innovative to achieve a competitive advantage. Operators will
have access to more than one supplier which provides the choice
of more than one product. Cost and reliability benefits which
has resulted from interface standards in the military and

commercial avionics communities have been extensively documented.




BENEFITS OF INTERFACE STANDARDS

Increased on-orbit servicing, improved reliability, improved
system availability; reduced system development, acquisition,
operational, and maintenance cost; new technology insertion
capability, system lifetime extension, system survivability

enhancement, and common maintenance support services are

.y -
REUSS V.24 O

poteﬁtiailééins to the space system user obtainable from

interface standards application.

Increased Capability For On-Orbit Servicing

Increased standard modules, physical and electrical
interfaces will enhance the design of on-orbit servicing systens,
tools, equipment, procedures, and human interfaces. Those
servicing aids will be useful for an expanded set of space
systems and will be applicable to DoD, NASA, and the commercial
world., The increased use of on-orbit support services, aided by
standardized modules intovspace system design, will have the
effect of reducing the non-recurring cost allocated to any
specif£; cuétomer or on-orbit support action. Increased

affordability will increase the incentive to design systms that

can benefit from the maintenance support services.

Improved Reliability and Reduced Production Cost

Commercial airline and electronic equipment production

esperience shows that operational reliability improves as

10
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production quantity increases. Labor intensive manufacturing
processes give way to automation. The design is improved to
eliminate problem areas. The same result is expected for
standardized space system modules, Improved reliability of
several orders of magnitude is foreseeable. The production of F3
specification modules by more than one vendor provides the choice

of designs offering reliability or other beneficial features.

Reduced production cost is expected for a standardized
module which is reflective of the amortization of the non-
recurring design, production setup, and other costs over a higher
production base; and the influence of competition. A price
reduction of one-third has been seen as the result of the

application of F3 standards in the electronics community.

Improved System Availability and Space System Survivability

F3 modules serve to enhance system
availability. The capability to reconfigure or switch functions
between several modules through the use of a standardized data
bus architecture, as a result of commands or autonomously, will
increase with standardized modules. Automonous reconfiguration
through the use of on-board RMM information can contributor to

system survivability and battle damage repair.

Reduced System Development, Acquisition, Operational and

Maintenance Cost

An inventory of off-the-shelf F3 specification modules will




serve to reduce the expenditure of resources and time required to
develop a space system. Increased quantities of reduced price
and increased quality F3 modules will increase the seiection for
use by the designer and supplier. The development cost is
largely eliminated, and the acquisition cost is reduced when the
off-the-shelf standard module is ordered. Operation and
maintenance costs is less for the standardized than unique
equiggf?§,¢g§¢§o £actets including the existence of test and
repair services. If spares are required on-orbit, the

quantities of unique items will be reduced.

New Technology Insertion Capability

Standardized interface specifications, defined physical
envelopes, and a standard data bus will enhance the development
of improved performance modules with reduced power consumption,
increased reliability, etc. These may be used to replace

outdated F3 modules during on-orbit servicing.

The use of the improved modules can also assist in the
extension of the useful operational lifetime of a satellite
system. The amortized annual cost would be reduced as the life
is extended over more years of useful service. Standard modules
also enhance the concept of on-orbit assembly of space systems

and structures,

Common Maintenance Support Services

The space system maintenance support services can be

12
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combined with those supporting other space systems, whether these
services are at ground or on-orbit, This will lead to cost and

quality improvements in these functions.

SUMMARY

Affordability is the critical issue. Military and civil
space system users count the cost of placing a new capability in
space,. Previously, the transportation (launch) cost and
capability was of primary importance. Reduced launch costs now
make it possible to consider the next approach to reducing the
cost and increasing the effectiveness of the satellite systenm.
To the extent that standardization will extend the useful life of
the spacecraft through improvements in reliability, reduncancy,
seviceability, and insertion of improved technology, the
development and transportation costs can be amortized over more
years of operation and more space system applications. A greater
degree of modularity will permit incremental launch concepts for

larger systems.

Increased standardization is possible in a high technology
environment. The form of standardization is the critical issue.
Draw on the experience and success achieved in the avionics

comunity to help us in getting this worthwhile endeavor underway.
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LEASECRAFT SYSTEM
Donald R. Burrowbridge
Fairchild Space Operations Company
Germantown, Maryland 20874

The LEASECRAFT concept provides the space and ground infrastructure for space
commercialization. Figure 1 depicts the sequence of payload exchange which only
requires that the payload and LEASECRAFT docking system be launched for repair or
payload changeout missions. The platform remains in orbit and is maintained during
routine visits. The functional requirements which were established early in the
LEASECRAFT program are summarized in Table 1 and resulted in a system design that
is shown in Figure 2. Of the six major system elements. two are controlled by NASA
and one by the customer. One of the LEASECRAFT challenges is the integration and
coordination of these diverse elements to meet the customer requirements. The
“bullets” of Figure 2 highlight the major components of the specific element.

The space platform consists of three Multimission Modular Spacecraft (MMS)
modules, Attitude Control, Communication and Data Handling, and Power, which are
designed to be replaced in space. The platform also includes a hi—gain tracking antenna,
and solar array assemblies which are designed for on—orbit maintenance. All of the
preceding components and the propulsion subsystem are attached to a structure which
interfaces directly with the Shuttle and are interconnected by an internal harness.
Figure 3 shows the multiplex data bus and power bus configuration. This MMS derived
system provides a very simple interface for the payload and platform maodules. It is
currently in use on the Solar Maximum Mission, Landsat 4 and 5, and the Gamma Ray
Observatory (GRO) Program.

Table 2 summarizes the performance of the LEASECRAFT space segment. As indicated
the attitude control subsystem (ACS) is very capable and with the use of a payload
sensor can provide exceptional performance. The modular power subsystem (MPS)
provides unregulated power and can be expanded by the addition of more power modules
and solar array. The propulsion module provides the mobility for platform orbit
adjustments and Shuttie rendezvous. The communications and data handling module
(C&DH) contains the brain of the spacecraft and communicates with the LEASECRAFT
control center. The payload weight is constrained by the Shuttle lift and down—weight
capability, the altitude changes desired, and the slew rates desired. Payloads as large as
60.000 pounds can be accommodated. The platform lifetime is not limited by any
consumables, since LEASECRAFT can be refueled. With maintenance LEASECRAFT
will be operable as long as economically feasible. Figure 4 shows the LEASECRAFT
configuration which was proposed to NASA for their platform services contract. Three
payload interfaces are available and payload power levels up to 2000 watts can be
provided. The “Z" payload location provides more than 88 square feet of unconstrained
area and can be further expanded for specific missions. The "X1" location provides
more than 32 square feet of interface area and has a depth which is determined by the
launch mode (attached or not) and the center—of—gravity constraints. The "X2"
payload location is an MMS type module and has a 16 square foot interface and is
nominally 1.5 feet deep. The X2 module can only be replaced at the present time by an
EVA operation while the others can be replaced with the Shuttle arm.
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Figure 5 depicts a possible configuration of a materials processing payload with a NASA
payload in the X1 location. This configuration has a larger solar array and an additional
power module. Figure 6 provides more detail on the MMS module box
accommodations.

The LEASECRAFT platform is designed to be launched by the NASA Space
Transportation System. The initial launch and first revisit will be provided by NASA
under the terms of the NASA/Fairchild Joint Endeavor Agreement which provides a free
launch for the LEASECRAFT platform and its commercial payload with a service flight
six months later. This service flight will demonstrate rendezvous, berthing, payload
changeout, module changeout and other appropriate tests. Key to the success of
commercial operations will be routine and reliable schedules of STS service at cost that
can be. 1o provide tinancjal certainty. Since transportation cost
will be the=fargest recurring cost to commercial users, the Shuttle charges are
determined by length, weight, requirements for non—standard services, and the
deployment and rendezvous altitudes required by the payload. LEASECRAFT has orbit

adjust capabilities, so a cost/risk tradeoff can be made relative to the STS service
altitudes.

The payload changeout and module service approach both utilize a LEASECRAFT docking
system to attach LEASECRAFT to the Orbiter so that the LEASECRAFT remains
outside of the cargo bay. The payload on the LEASECRAFT is then relocated to an
interim berthing location and the new payload attached to the LEASECRAFT. The old
payload is then attached to the payload carrier which carried up the replacement
payload. Module servicing is conducted in the same manner with a module that is
carried up on the docking system.

Table 3 itemizes the standard and optional services that are provided by the
LEASECRAFT System. A very attractive feature for commercial users is the
payment—for--services—rendered philosophy. The Fairchild Space Operations Company
finances the development of the LEASECRAFT System which allows the user to limit
his cash flow by not having to make an investment in a platform. The platform cost is
then treated as an operational expense. The deferment of these costs can solve
budgeting problems for all users. NASA initiated a procurement in January which would
require the services of a privately owned and operated multipurpose space platform.
They asked for 60 months of service over an 84 month period to accommodate three or
four “Explorer" payloads. Service is to begin in late 1988. Fairchiid submitted a
proposat’ t"NASA which provided excess capability. This excess capability takes two
forms. First, the twenty—four months that NASA is not using the facility and second,

platform capabilities in excess of NASA's requirements. In the first case all of the
platform capabilities described in Table 2 are available and in the second from 100 to
1000 watts of power are available during the NASA missions. Payloads flown in
conjunction with the NASA missions will be constrained by the NASA mission operation
requirements; however, significant payload opportunities do exist during these periods
at reduced cost.
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Figure 7 depicts a docking system that permits the LEASECRBAFT to attach to the
Shuttle with only minor requirements for cargo bay space. This structure also provides
an interim location for payload storage thereby solving the "third hand problem.” The
alternatives to this type of system are the use of a second RMS which would mean
committing 2/3 of the RMS inventory to one Orbiter and the necessary installation
time, or reserving sufficient cargo bay space to install LEASECRAFT in the bay for
payload changeout and servicing. Both of these alternative approaches greatly
complicate manifesting and cost more than the "docking mast" approach. These
considerations are of great importance to the commercial STS customer.

The STS transportation cost and platform design are also driven by the rendezvous
altitude and servicing scenario. The STS “standard scenario” requires the platform to
be at 260 n.m. ( a one day repeat orbit) at the time of STS launch and then to descend to
170 n.m. for rendezvous. The platform then requires a substantial propulsion system
and refueling capability. This capability duplicates STS capabilities. Alternative
scenarios can minimize platform propulsion requirements by having the STS fly to 260
n.m. but cost about 10800 Ibs. of STS performance (relative to 160 n.m.) and will
approximate the requirements of the Space Station. Other options will exist for
specific mission requirements. These scenarios are shown in Figure 8.

In summary, LEASECRAFT offers many advantages to the user and will promate space
commercialization. These advantages include:

END—TO—-END COMMERCIAL SERVICE
PAY FOR SERVICE RECEIVED
ON-—ORBIT REPAIR

CHANGE-OUT OF INSTRUMENTS
LARGE PAYLOAD CAPACITY

HIGH HERITAGE HARDWARE
PLATFORM MOBILITY
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4 An operational Leasecraft 2 Once a Leasecraft satel-
retracts its solar array as it lite is locked in the
descends and maneuvers shuttie bay, the RMS removes
» toward the shuttie. The the payload/experiment, stows
Remote Manipulator System it, and replaces it with a new
(RMS) arm iocks on to the unit.
platform.
Figure 1. In-Orbit Operational Sequence
SYSTEM
SERVICES
® SYSTEMS ENGINEERING
® PLATFORM/PAYLOAD INTEGRATION
(INCLUDING STS AND TDRSS)
- ® PLATFORM/PAYLOAD OPERATIONS
(P/L COMMANDS FROM RUPOCC'S)
® PLATFORM/PAYLOAD SERVICING
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Figure 2. Leasecraft Platform Services System
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Figure 4. NASA Leasecraft Configuration
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Figure 5. Materials Processing Configuration
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NASA STANDARD RETRIEVAL OPERATIONS (SCENARIO 1)
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Figure 7. The Leasecraft Docking System
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Figure 8. NASA Platform Services Rendezvous Options

Table 1. Leasecraft Functional Requirements

¢ Up to 6,600 watts of electrical power in 1650W increments

¢ Two-way transfer 20,000 Ibs. to 360 n. miles; 4,000 ibs. to 600 n. miles
¢ TDRSS, STDN or SGLS compatible communication links

o Attitude error <.01° with attitude rate .<.002°/sec

e Autonomous operation

¢ Dual redundant (no single point failures)

e Capable of being launched & retrieved by STS

¢ Cost-Effective utilization of STS cargo bay (1,100 1b./ft.)

¢ Direct spaceframe attachment to STS longeron & keel fittings

e Utilize standard MMS modules

¢ All modules & major sub-assemblies exchangeable in space environment
e Leasecraft mated to payload in orbit

e Mating, deployment, retrieval & changeout timeline’s minimized

e Maximum use of RMS for service operations
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Table 2. Leasecraft Performance Summary

PAYLOAD WEIGHT CAPABILITY ____ PRIMARY PAYLOAD: UP TO 14500 kg (32,000 LBS) }APPROXIMATE
SECONDARY PAYLOADS: UP TO 1,000 kg (2.200 LBS)
TYPES OF MISSIONS STELLAR, SOLAR, EARTH POINTED, OR SPECIAL PURPOSE MISSIONS; LOW
EARTH ORBITS; INERTIAL POINTED OR PAYLOAD POINTED.
OPERATING ORBITAL ALTITUDE _____~ LOW EARTH ORBITS, ALL INCLINATIONS 2285 DEG.
LIFE EXPECTANCY/REDUNDANCY___ ALL CRITICAL ELEMENTS REDUNDANT, ALL SUBSYSTEMS REPLACEABLE
IN ORBIT. NO SINGLE POINT FAILURE TO PREVENT RESUPPLY OR RETRIEVAL BY
SHUTTLE.
LAUNCH VEHICLE SPACE SHUTTLE FOR LAUNCH, SERVICE, AND RETRIEVAL.
COMMUNICATIONS AND DATA HANDLING SUBSYSTEM
TRANSPONDER S-BAND STDN/TDRSS, TRANSPONDER OUTPUT POWER AT MODULE
INTERFACE 08, 2.0, 40 WATTS, SELECTABLE AT MANUFACTURE.
COMMAND RATES 2 KBPS {SHUTTLE/STDN). 125 and 1 KBPS SELECTABLE (TDRSS).
REAL-TIME TELEMETRYRATES 1,2, 4,8 16, 32, 64 KBPS
TELEMETRY FORMATS 2 SELECTABLE PRIOR TO LAUNCH. PLUS IN-ORBIT PROGRAMMABLE

CAPABILITY: ALL FORMATS CONTAIN 890 8-BIT DATA WORDS MAXIMUM

STORED DATA DUMP/MISSION DATA SOURCE__ 2048 MBPS MAXIMUM. 1.024 MBPS CODED DATA. UP TO 100 MBPS IN
OPTIONAL WIDEBAND DATA MODULE.

ON-BOARD COMPUTER 18 BITS PER WORD. 32K WORDS OF MEMORY, EXPANDABLE TO
64K WORDS. 5 MICROSECOND ADD TIME.
DATA STORAGE 108 BIT TAPE RECORDERS.
ATTITUDE CONTROL SUBSYSTEM
TYPE 3-AXIS STABILIZED, ZERO MOMENTUM
ATTITUDE REFERENCE
(WITHOUT PAYLOAD SENSOR)____ STELLAR (INERTIAL)
POINTING ERROR (ONE SIGMA)
WITHOUT PAYLOAD SENSOR____ <102 DEG.
WITH PAYLOAD SENSOR (IDEAL)____ <105 DEG.
POINTING STABILITY (ONE SIGMA)
AVERAGE RATE <10 DEG./SEC.
JTTER
WITHOUT PAYLOAD SENSOR_____ <6x 10" DEG. (20 MINUTE PERIOD)
WITH PAYLOAD SENSOR (IDEAL)____ <106 DEG.
SLEW RATE MAXIMUM 16°/SEC WITH STANDARD INERTIAL REFERENCE UNIT
POWER SUBSYSTEM (BASELINE - 1 MODULE - UP TO 5 MODULES AVAILABLE)
VOLTAGE OUTPUT +28+7'VDC
POWER TO PAYLOADS (MAX)____ 1000, 2,600, 4,200, 5700, 7300 WATTS (1 - TO - 5 POWER MODULES)
BATTERIES TWO 20 - AMPERE - HOUR BATTERIES TO THREE 60 - AMPERE - HOUR BATTERIES

PER POWER MODULE

PROPULSION MODULE 4 - TANK HYDRAZINE SYSTEM CAPABLE OF CARRYING 1800 Kg (4000 LBS.)
4 - 445N (100 LB.) ORBIT ADJUST THRUSTERS, 12-22.2N (5 LB.) RCS THRUSTERS.
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Table 3. Leasecraft Services

Standard Services

Standard Services under fixed priced contract will include:
¢ Payload integration, launch, on-orbit operation and return
* Experimenter requirements accommodation analysis
e ol . Interfaqg,Qog,quQ}atlon & basic engineering support .
* Selected baselive flight hardware for integration with payload:

- Remote Command and Telemetry Unit(s)
- Standard electrical/mechanical interface elements

- ¢ Master.interface tool for flight adapter for payload module
¢ | easecraft/payload operations plan and flight software
¢ Platform, mechanical, power, and data system simulator(s)

Optional Services
Optional services under Mission Unique Contract can include:
¢ Additional platform power
e Attitude control augmentations
e Communications augmentation for higher data rates
¢ Additional systems engineering support and services for payload modules and instruments
¢ Shipping containers and transportation for payload modules and instruments
e Software for automated checkout equipment for payload modules
* Design, fabrication, integration and testing of payload modules
* Remote Data Work Staions

. - Supporting flight operations
- Capture, display, and return to user of scientific data
- Communication links to RUPOCC
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